Startseite A novel kinetic-spectrophotometric method for determination of nitrites in water
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A novel kinetic-spectrophotometric method for determination of nitrites in water

  • Zenovia Moldovan EMAIL logo
Veröffentlicht/Copyright: 27. Mai 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A simple, selective and sensitive kinetic method for the determination of nitrite in water was developed. The method is based on the catalytic effect of nitrite on the oxidation of methylene blue (MB) with bromate in a sulfuric acid medium. During the oxidation process, absorbance of the reaction mixture decreases with the increasing time, inversely proportional to the nitrite concentration. The reaction rate was monitored spectrophotometrically at λ = 666 nm within 30 s of mixing. Linear calibration graph was obtained in the range of 0.005–0.5 μg mL−1 with a relative standard deviation of 2.09 % for six measurements at 0.5 μg mL−1. The detection limit was found to be 0.0015 μg mL−1. The effect of different factors such as acidity, time, bromate concentration, MB concentration, ionic strength, and order of reactants additions is reported. Interference of the most common foreign ions was also investigated. The optimum experimental conditions were: 0.38 mol L−1 H2SO4, 5 × 10.4 mol L−1 KBrO3, 1.25 × 10.5 mol L−1 MB, 0.3 mol L−1 sodium nitrate, and 25°C. The proposed method was conveniently applied for the determination of nitrite in spiked drinking water samples.

[1] Afkhami, A., Bahram, M., Gholami, S., & Zand, Z. (2005). Micell-mediated extraction for the spectrophotometric determination of nitrite in water and biological samples based on its reaction with p-nitroaniline in the presence of diphenylamine. Analytical Biochemistry, 336, 295–299. DOI: 10.1016/j.ab.2004.10.026. http://dx.doi.org/10.1016/j.ab.2004.10.02610.1016/j.ab.2004.10.026Suche in Google Scholar

[2] Al-Okab, R. A., & Syed, A. A. (2007). Novel reactions for simple and sensitive spectrophotometric determination of nitrite. Talanta, 72, 1239–1247. DOI: 10.1016/j.talanta.2007.01.027. http://dx.doi.org/10.1016/j.talanta.2007.01.02710.1016/j.talanta.2007.01.027Suche in Google Scholar

[3] Amin, D. (1986). Determination of nitrite ion using the reaction with 4-aminobenzotrifluoride and 1-naphthol. Analyst, 111, 1335–1337. DOI: 10.1039/AN9861101335. http://dx.doi.org/10.1039/an986110133510.1039/an9861101335Suche in Google Scholar

[4] Barzegar, M., Mousavi, M. F., & Nemati, A. (2000). Kinetic spectrophotometric determination of trace amounts of nitrite by its reaction with molybdosilicic acid blue. Microchemical Journal, 65, 159–163. DOI: 10.1016/S0026-265X(00)00049-7. http://dx.doi.org/10.1016/S0026-265X(00)00049-710.1016/S0026-265X(00)00049-7Suche in Google Scholar

[5] Dayananda, B. P., & Revanasiddappa, H. D. (2007). Determination of nitrites by the formation of bisazo dye. Chemical Papers, 61, 446–451. DOI: 10.2478/s11696-007-0060-1. http://dx.doi.org/10.2478/s11696-007-0060-110.2478/s11696-007-0060-1Suche in Google Scholar

[6] Ensafi, A. A., & Keyvanfard, M. (1994). Selective kinetic spectrophotometric determination of nitrite in food and water. Analytical Letters, 27, 169–182. DOI: 10.1080/00032719408006354. 10.1080/00032719408006354Suche in Google Scholar

[7] Gabbay, J., Almog, Y., Davidson, M., & Donagi, A. E. (1977). Rapid spectrophotometric micro-determination of nitrites in water. Analyst, 102, 371–376. DOI: 10.1039/AN9770200371. http://dx.doi.org/10.1039/an977020037110.1039/an9770200371Suche in Google Scholar

[8] Ghasemi, J., Jabbari, A., Amini, A., Oskoei, A. G., & Abdolahi, B. (2004). Kinetic spectrophotometric determination of nitrite based on its catalytic effect on the oxidation of methyl red by bromate. Analytical Letters, 37, 2205–2214. DOI: 10.1081/AL-200026698. http://dx.doi.org/10.1081/AL-20002669810.1081/AL-200026698Suche in Google Scholar

[9] Greenberg, E., Clesceri, L. S., & Eaton, A. D. (eds). (2000). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association. Suche in Google Scholar

[10] Helaleh, M. I. H., & Korenaga, T. (2001). Sensitive spectrophotometric determination of nitrite in human saliva and rain water and of nitrogen dioxide in the atmosphere. Journal of Association of Official Analytical Chemists International, 84, 53–58. 10.1093/jaoac/84.1.53Suche in Google Scholar

[11] Horita, K., Wang, G., & Satake, M. (1997). Spectrophotometric determination of nitrate and nitrite in soil and water samples with a diazotizable aromatic amine and coupling agent using column preconcentration on naphthalene supported with ion-pair of tetradecyldimethylbenzylammonium and iodide. Analytica Chimica Acta, 350, 295–303. DOI: 10.1016/S0003-2670(97)00316-4. http://dx.doi.org/10.1016/S0003-2670(97)00316-410.1016/S0003-2670(97)00316-4Suche in Google Scholar

[12] Ivanov, V. M. (2004). The 125th anniversary of the Griess reagent. Journal of Analytical Chemistry, 59, 1002–1005. DOI: 10.1023/B:JANC.0000043920.77446.d7. http://dx.doi.org/10.1023/B:JANC.0000043920.77446.d710.1023/B:JANC.0000043920.77446.d7Suche in Google Scholar

[13] Kaveeshwar, R., Cherian, L., & Gupta, V. K. (1991). Extraction-spectrophotometric determination of nitrite using 1- aminonaphthalene-2-sulphonic acid. Analyst, 116, 667–669. DOI: 10.1039/AN9911600667. http://dx.doi.org/10.1039/an991160066710.1039/AN9911600667Suche in Google Scholar

[14] Kumar, B. S. M., Srikanth, T. R., & Balasubramanian, N. (1993). Spectrophotometric determination of nitrogen dioxide in air. Fresenius’ Journal of Analytical Chemistry, 345, 592–594. DOI: 10.1007/BF00325806. http://dx.doi.org/10.1007/BF0032580610.1007/BF00325806Suche in Google Scholar

[15] Lijinsky, W., & Epstein, S. S. (1970). Nitrosamines as environmental carcinogens. Nature, 225, 21–23. DOI: 10.1038/22502-1a0. http://dx.doi.org/10.1038/225021a0Suche in Google Scholar

[16] Mansour, S., Galil, A., Mahadevaiah, M. S., Kumar, Y., & Nagendrappa, G. (2007). A simple and rapid spectrophotometric method for the determination of nitrite by its decolorizing effect on peroxovanadate complex. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67, 76–82. DOI: 10.1016/j.saa.2006.06.026. http://dx.doi.org/10.1016/j.saa.2006.06.02610.1016/j.saa.2006.06.026Suche in Google Scholar

[17] Manzoori, J. L., & Soflaee, S. (2001). Spectrophotometric determination of nitrite after preconcentration on an SDS coated alumun column. Analytical Letters, 34, 231–237. DOI: 10.1081/AL-100001575. http://dx.doi.org/10.1081/AL-10000157510.1081/AL-100001575Suche in Google Scholar

[18] Melchert, W. R., Infante, C. M. C., & Rocha, F. R. P. (2007). Development and critical comparison of greener flow procedures for nitrite determination in natural waters. Microchemical Journal, 85, 209–213. DOI: 10.1016/j.microc.2006.05.010. http://dx.doi.org/10.1016/j.microc.2006.05.01010.1016/j.microc.2006.05.010Suche in Google Scholar

[19] Mubarak, A. T., Mohamed, A. A., Fawy, K. F., & Al-Shihry, A. S. (2007). A novel kinetic determination of nitrite based on the perphenazine-bromate redox reaction. Microchimica Acta, 157, 99–105. DOI: 10.1007/s00604-006-0661-3. http://dx.doi.org/10.1007/s00604-006-0661-310.1007/s00604-006-0661-3Suche in Google Scholar

[20] Nagaraja, P., Kumar, M. S. H., & Mallikarjuna, N. N. (2002). Dapsone a new diazotizing reagent for the spectrophotometric determination of nitrite in waste and natural water samples. Annali di Chimica, 92, 127–134. Suche in Google Scholar

[21] Nagaraja, P., Kumar, M. S. H., Rangappa, K. S., & Bilwa, L. M. (1998). A new spectrophotometric reagent for the determination of nitrite in polluted water. Oriental Journal of Chemistry, 14, 55–58. Suche in Google Scholar

[22] Patty, F. A. (1963). Industrial hygiene and toxicology (Vol. 2, p. 917). New York: Interscience. Suche in Google Scholar

[23] Pettas, I. A., Lafis, S. I., & Karayannis, M. I. (1998). Reaction rate method for determination of nitrite by applying a stopped-flow technique. Analytica Chimica Acta, 376, 331–337. DOI: 10.1016/S0003-2670(98)00553-4. http://dx.doi.org/10.1016/S0003-2670(98)00553-410.1016/S0003-2670(98)00553-4Suche in Google Scholar

[24] Pouretedal, H. R., & Nazari, B. (2004). Kinetic spectrophotometric determination of trace amounts of nitrite by catalytic reaction between methylthymol blue and bromate. Journal of Chinese Chemical Society, 51, 1353–1356. 10.1002/jccs.200400197Suche in Google Scholar

[25] Rathore, H. P. S., & Tiwari, S. K. (1991). Spectrophotometric determination of nitrite in polluted waters using 3-nitroaniline. Analytica Chimica Acta, 242, 225–228. DOI: 10.1016/0003-2670(91)87068-I. http://dx.doi.org/10.1016/0003-2670(91)87068-I10.1016/0003-2670(91)87068-ISuche in Google Scholar

[26] Revanasiddappa, Kumar, K., & Bilwa, M. (2001). A facile spectrophotometric determination of nitrite using diazotization with p-nitroaniline and coupling with acetyl acetone. Microchimica Acta, 137, 249–253. DOI: 10.1007/s006040170018. http://dx.doi.org/10.1007/s00604017001810.1007/s006040170018Suche in Google Scholar

[27] Revanasiddappa, H. D., & Kumar, T. N. K. (2001). New spectrophotometric method for the determination of nitrite in water. Fresenius Environmental Bulletin, 10, 781–785. Suche in Google Scholar

[28] Shishehbore, M. R., Nasirizadeh, N., & Kerdegari, A. A. (2005). Kinetic determination of thiocyanate on the basis of its catalytic effect on the oxidation of methylene blue with potassium bromate. Analytical Sciences, 21, 1213–1216. DOI: 10.2116/analsci.21.1213. http://dx.doi.org/10.2116/analsci.21.121310.2116/analsci.21.1213Suche in Google Scholar PubMed

[29] Uraisin, K., Takayanagi, T., Oshima, M., Nacapricha, D., & Motomizu, S. (2006). Kinetic-spectrophotometric method for the determination of trace amounts of bromide in seawater. Talanta, 68, 951–956. DOI: 10.1016/j.talanta.2005.06.061. http://dx.doi.org/10.1016/j.talanta.2005.06.06110.1016/j.talanta.2005.06.061Suche in Google Scholar PubMed

Published Online: 2009-5-27
Published in Print: 2009-8-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. GC-MS analyses of flower ether extracts of Prunus domestica L. and Prunus padus L. (Rosaceae)
  2. A novel kinetic-spectrophotometric method for determination of nitrites in water
  3. Characterization of recombinant antibodies for detection of TNT and its derivatives
  4. Improvements in the selection of real components forming a substitute mixture for petroleum fractions
  5. Chemical evaluation of seeded fruit biomass of oil pumpkin (Cucurbita pepo L. var. Styriaca)
  6. Application of 31P NMR for added polyphosphate determination in pork meat
  7. Estimation of composition, coordination model, and stability constant of some metal/phosphate complexes using spectral and potentiometric measurements
  8. Synthesis, characterization, and anti-tumor activities of some transition metal(II) complexes with podophyllic acid hydrazide
  9. Artificial neural network prediction of steric hindrance parameter of polymers
  10. Immobilization of porphyrins in poly(hydroxymethylsiloxane)
  11. Preparation and characterization of porous cordierite for potential use in cellular ceramics
  12. Characterization of NiFe2O4 nanoparticles synthesized by various methods
  13. QSAR analysis of 1,3-diaryl-2-propen-1-ones and their indole analogs for designing potent antibacterial agents
  14. QSAR study of 2,4-disubstituted phenoxyacetic acid derivatives as a CRTh2 receptor antagonists
  15. Comparison of isothermal and non-isothermal chemiluminescence and differential scanning calorimetry experiments with benzoyl peroxide
  16. Wettability of plasma-polymerized vinyltriethoxysilane film
  17. A spectrofluorimetric method for the determination of acitretin in pharmaceuticals
  18. Fatty acid profile of Trichosanthes kirilowii Maxim. seed oil
  19. Determination of the enthalpy of fusion of K3TaO2F4 and KTaF6
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0038-2/html
Button zum nach oben scrollen