Startseite The new K, Pb-bearing uranyl-oxide mineral kroupaite: Crystal-chemical implications for the structures of uranyl-oxide hydroxy-hydrates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The new K, Pb-bearing uranyl-oxide mineral kroupaite: Crystal-chemical implications for the structures of uranyl-oxide hydroxy-hydrates

  • Jakub Plášil ORCID logo EMAIL logo , Anthony R. Kampf , Travis A. Olds , Jiří Sejkora , Radek Škoda ORCID logo , Peter C. Burns ORCID logo und Jiří Čejka
Veröffentlicht/Copyright: 2. April 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Kroupaite (IMA 2017-031), ideally KPb0.5[(UO2)8O4(OH)10]·10H2O, is a new uranyl-oxide hydroxyl-hydrate mineral found underground in the Svornost mine, Jáchymov, Czechia. Electron-probe microanalysis (WDS) provided the empirical formula (K1.28Na0.07)Σ1.35(Pb0.23Cu0.14Ca0.05Bi0.03Co0.02Al0.01)Σ0.48 [(UO2)7.90(SO4)0.04O4.04(OH)10.00]·10H2O, on the basis of 40 O atoms apfu. Sheets in the crystal structure of kroupaite adopt the fourmarierite anion topology, and therefore kroupaite belongs to the schoepite-family of minerals with related structures differing in the interlayer composition and arrangement, and charge of the sheets. Uptake of dangerous radionuclides (90Sr or 135Cs) into the structure of kroupaite and other uranyl-oxide hydroxy-hydrate is evaluated based on crystal-chemical considerations and Voronoi-Dirichlet polyhedra measures. These calculations show the importance of these phases for the safe disposal of nuclear waste.

Acknowledgments and Funding

Two anonymous reviewers as well as associate editor and structure editor are thanked for constructive comments, which improved the manuscript. This study was funded, in part, by the John Jago Trelawney Endowment to the Mineral Sciences Department of the Natural History Museum of Los Angeles County, by the Department of Energy, Basic Energy Sciences, Heavy Elements Program under grant number: DE-FG02-07ER15880, by the Czech Science Foundation (GACR 17-09161S to J.P., J.S., and J.Č.), and by OP VVV project (Geobarr CZ.02.1.01/ 0.0/0.0/16_026/0008459 to R.S.).

References cited

Belai, N., Frisch, M., Ilton, E.S., Ravel, B., and Cahill, C.L. (2008) Pentavalent uranium oxide via reduction of [UO22+ under hydrothermal reaction conditions. Inorganic Chemistry, 47, 10,135–10,140.Suche in Google Scholar

Blatov, V.A. (2004) Voronoi–dirichlet polyhedra in crystal chemistry: Theory and applications. Crystallography Reviews, 10, 249–318.10.1080/08893110412331323170Suche in Google Scholar

Brugger, J., Krivovichev, S.V., Berlepsh, P., Meisser, N., Ansermet, S., and Armbruster, T. (2004) Spriggite, Pb3[(UO26O8(OH)2(H2O)3 a new mineral with beta-U3O8-type sheets: description and crystal structure. American Mineralogist, 89, 339–347.10.2138/am-2004-2-312Suche in Google Scholar

Burns, P.C. (1997) A new uranyl-oxide-hydrate sheet in vandendriesscheite: implications for mineral paragenesis and the corrosion of spent nuclear fuel. American Mineralogist, 82, 1176–1186.10.2138/am-1997-11-1214Suche in Google Scholar

Burns, P.C. (1998) The structure of compreignacite, K2(UO23O2(OH)32(H2O)7 Canadian Mineralogist, 36, 1061–1067.Suche in Google Scholar

Burns, P.C. (1999) A new complex sheet of uranyl polyhedra in the structure of wölsendorfite. American Mineralogist, 84, 1661–1673.10.2138/am-1999-1021Suche in Google Scholar

Burns, P.C. (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. Canadian Mineralogist, 43, 1839–1894.10.2113/gscanmin.43.6.1839Suche in Google Scholar

Burns, P.C., and Deely, K.M. (2002) Topologically novel sheet of uranyl pentagonal bipyramids in the structure of Na[(UO24O2(OH)5(H2O)2 Canadian Mineralogist, 40, 1579–1586.10.2113/gscanmin.40.6.1579Suche in Google Scholar

Burns, P.C., and Finch, R.J. (1999) Wyartite: Crystallographic evidence for the first pentavalent-uranium mineral. American Mineralogist, 84, 1456–1460.10.2138/am-1999-0926Suche in Google Scholar

Burns, P.C., and Hanchar, J. (1999) The structure of masuyite, Pb[(UO23O8(OH)2 (H2O)3 and its relationship to protasite. Canadian Mineralogist, 37, 1483–1491.Suche in Google Scholar

Burns, P.C., and Hill, F.C. (2000a) Implications of the synthesis and structure of the Sr analogue of curite. Canadian Mineralogist, 38, 175–181.10.2113/gscanmin.38.1.175Suche in Google Scholar

Burns, P.C., and Hill, F.C. (2000b) A new uranyl sheet in K5[(UO210O8(OH)9(H2O): new insights into sheet anion-topologies. Canadian Mineralogist, 38, 163–173.10.2113/gscanmin.38.1.163Suche in Google Scholar

Burns, P.C., and Li, Y. (2002) The structures of becquerelite and Sr-exchanged becquerelite. American Mineralogist, 87, 550–557.10.2138/am-2002-0418Suche in Google Scholar

Burns, P.C., Miller, M.L., and Ewing, R.C. (1996) U6+ minerals and inorganic phases: a comparison and hierarchy of crystal structures. Canadian Mineralogist, 34, 845–880.Suche in Google Scholar

Burns, P.C., Finch, R.J., Hawthorne, F.C., Miller, M.L., and Ewing, R.C. (1997) The crystal structure of ianthinite, U24+(UO24O6(OH)4(H2O)4]H2O)5 a possible phase for Pu4+ incorporation during the oxidation of spent nuclear fuel. Journal of Nuclear Materials, 249, 199–206.10.1016/S0022-3115(97)00212-2Suche in Google Scholar

Cahill, C.L., and Burns, P.C. (2000) The structure of agrinierite: a Sr-containing uranyl-oxide hydrate mineral. American Mineralogist, 85, 1294–1297.10.2138/am-2000-8-922Suche in Google Scholar

Casas, I., Bruno, J., Cera, E., Finch, R.J., and Ewing, R.C. (1997) Characterization and dissolution behavior of a becquerelite from Shinkolobwe, Zaire. Geochimica et Cosmochimica Acta, 61, 3879–3884.10.1016/S0016-7037(97)00195-6Suche in Google Scholar

Colmenero, F., Cobos, J., and Timón, V. (2018) Periodic density functional theory study of the structure, Raman spectrum, and mechanical properties of schoepite mineral. Inorganic Chemistry, 57, 4470–4481.10.1021/acs.inorgchem.8b00150Suche in Google Scholar

Colmenero, F., Plášil, J., and Němec, I. (2020) Uranosphaerite: Crystal structure, hydrogen bonding, mechanics, infrared and Raman spectroscopy and thermodynamics. Journal of Physical Chemistry, 141, 109400.10.1016/j.jpcs.2020.109400Suche in Google Scholar

Dao, N.Q. (1972) Structure cristalline de Cs2UO2F4H2O. Acta Crystallographica, B28, 2011–2015.Suche in Google Scholar

Ewing, R.C. (2015) Long-term storage of spent nuclear fuel. Nature Materials, 14, 252–257.10.1038/nmat4226Suche in Google Scholar

Finch, R.J., and Ewing, R.C. (1991) The corrosion of uraninite under oxidizing conditions. Journal of Nuclear Materials, 190, 133–156.10.1016/0022-3115(92)90083-WSuche in Google Scholar

Finch, R.J., and Murakami, T. (1999) Systematics and paragenesis of uranium minerals. In P.C. Burns and R.C. Ewing, Eds., Uranium: Mineralogy, Geochemistry and the Environment, p. 38, 91–179. Reviews in Mineralogy, Mineralogical Society of America, Chantilly, Virginia.10.1515/9781501509193-008Suche in Google Scholar

Finch, R.J., Suksi, J., Rasilainen, K., and Ewing, R.C. (1996a) Uranium-series ages of secondary uranium minerals with applications to the long-term evolution of spent nuclear fuel. In W.M. Murphy and D.A. Knecht, Eds., Scientific Basis for Nuclear Waste Management XIX, 412, 823–830. Materials Research Society, Pittsburgh.10.1557/PROC-412-823Suche in Google Scholar

Finch, R.J., Cooper, M.A., Hawthorne, F.C., and Ewing, R.C. (1996b) The crystal structure of schoepite, [(UO28O2(OH)12(H2O)12 Canadian Mineralogist, 34, 1071–1088.Suche in Google Scholar

Finch, R.J., Burns, P.C., Hawthorne, F.C., and Ewing, R.C. (2006) Refinement of the crystal structure of billietite Ba[(UO26O4(OH)6(H2O)8 Canadian Mineralogist, 44, 1197–1205.10.2113/gscanmin.44.5.1197Suche in Google Scholar

Gagné, O.C., and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562–578.10.1107/S2052520615016297Suche in Google Scholar

Ghazisaeed, S., Kiefer, B., and Plášil, J. (2019) Revealing hydrogen atoms in a highly-absorbing material: an X‑ray diffraction study and Torque method calculations for lead-uranyl-oxide mineral curite. RSC Advances, 9, 10058–10063.10.1039/C8RA09557DSuche in Google Scholar

Giammar, D.E., and Hering, J.G. (2004) Influence of dissolved sodium and cesium on uranyl-oxide hydrate solubility. Environmental Science and Technology, 38, 171–179.10.1021/es0345672Suche in Google Scholar

Glatz, R.E., Li, Y.P., Hughes, K.A., Cahill, C.L., and Burns, P.C. (2002) Synthesis and structure of a new Ca uranyl-oxide hydrate, Ca(UO24O3(OH)4(H2O)2 and its relationship to becquerelite. Canadian Mineralogist, 40, 217–224.10.2113/gscanmin.40.1.217Suche in Google Scholar

Gorman-Lewis, D., Fein, J.B., Burns, P.C., Szymanowski, J.E.S., and Converse, J. (2008) Solubility measurements of the uranyl-oxide hydrate phases metaschoepite, compreignacite, Na–compreignacite, becquerelite, and clarkeite. Journal of Chemical Thermodynamics, 40, 980–990.10.1016/j.jct.2008.02.006Suche in Google Scholar

Hawthorne, F.C. (2015) Toward theoretical mineralogy: A bond-topological approach. American Mineralogist, 100, 696–713.10.2138/am-2015-5114Suche in Google Scholar

Hill, F.C., and Burns, P.C. (1999) The structure of synthetic Cs uranyl hydrate and its relationship to compreignacite. Canadian Mineralogist, 37, 1283–1288.Suche in Google Scholar

Hloušek, J., Plášil, J., Sejkora, J., and Škácha, P. (2014) News and new minerals from Jáchymov, Czech Republic (2003–2014). Bulletin mineralogicko-petrologického oddělení Národního Muzea (Praha), 22, 155–181 (in Czech with English abstract).Suche in Google Scholar

Huang, J., Wang, X., and Jacobson, A.J. (2003) Hydrothermal synthesis and structures of the new open-framework uranyl silicates Rb4(UO22(Si8O20 (USH-2Rb), Rb2(UO2 (Si2O6H2O (USH-4Rb), and A2(UO2(Si2O60.5H2O (USH-5A; A = Rb, Cs). Journal of Material Chemistry, 13, 191.10.1039/b208787cSuche in Google Scholar

Janeczek, J., Ewing, R.C., Oversby, V.M., and Werme, L.O. (1999) Uraninite and UO2 in spent nuclear fuel: a comparison. Journal of Nuclear Materials, 238, 121–130.10.1016/S0022-3115(96)00345-5Suche in Google Scholar

Kirkegaard, M.C., Niedziela, J.L., Miskowiec, A., Shields, A.E., and Anderson, B.B. (2019) Elucidation of the structure and vibrational spectroscopy of synthetic metaschoepite and its dehydration product. Inorganic Chemistry, 58, 7310–7323.10.1021/acs.inorgchem.9b00460Suche in Google Scholar PubMed

Klingensmith, A.L., Deely, K.M., Kinman, W.S., Kelly, V., and Burns, P.C. (2007) Neptunium incorporation in sodium-substituted metaschoepite. American Mineralogist, 92, 662–669.10.2138/am.2007.2350Suche in Google Scholar

Krivovichev, S.V., and Burns, P.C. (2001) Crystal chemistry of uranyl molybdates. IV. The structures of M2((UO26(MoO47(H2O)2 (M = Cs, NH4 Canadian Mineralogist, 39, 207–214.10.2113/gscanmin.39.1.207Suche in Google Scholar

Krivovichev, S.V., and Plášil, J. (2013) Mineralogy and crystallography of uranium. In P.C. Burns and G.E. Sigmon, Eds., Uranium from Cradle to Grave, 43, 15–119. Mineralogical Association of Canada Short Courses.Suche in Google Scholar

Kubatko, K.-A., and Burns, P.C. (2006b) Cation-cation interactions in Sr5(UO220 (UO62O16(OH)6(H2O)6 and Cs(UO29U3O16(OH)5 Inorganic Chemistry, 45, 10277–10281.10.1021/ic0609453Suche in Google Scholar

Kubatko, K.A., Helean, K., Navrotsky, A., and Burns, P.C. (2006a) Thermodynamics of uranyl minerals: Enthalpies of formation of uranyl oxide hydrates. American Mineralogist, 91, 658–666.10.2138/am.2006.1856Suche in Google Scholar

Li, Y., and Burns, P.C. (2000a) Investigations of crystal-chemical variability in lead uranyl-oxide hydrates. II. Fourmarierite. Canadian Mineralogist, 38, 737–749.10.2113/gscanmin.38.3.737Suche in Google Scholar

Li, Y., and Burns, P.C. (2000b) Synthesis and crystal structure of a new Pb uranyl-oxide hydrate with a framework structure that contains channels. Canadian Mineralogist, 38, 1433–1441.10.2113/gscanmin.38.6.1433Suche in Google Scholar

Li, Y., and Burns, P.C. (2001) The structures of two sodium uranyl compounds relevant to nuclear waste disposal. Journal of Nuclear Materials, 299, 219–226.10.1016/S0022-3115(01)00702-4Suche in Google Scholar

Li, Y., Cahill, C.L., and Burns, P.C. (2001) Synthesis, structural characterization, and topological rearrangement of a novel open framework U-O material: (NH43(H2O)2{[(UO210O10(OH)][(UO4(H2O)2}. Chemistry of Materials, 13, 4026–4031.10.1021/cm0008359Suche in Google Scholar

Li, H., Langer, E.M., Kegler, P., Modolo, G., and Alekseev, E.V. (2018) Formation of open framework uranium germanates: The influence of mixed molten flux and charge density dependence in U-silicate and U-germanate families. Inorganic Chemistry, 57, 11,201–11,216.10.1021/acs.inorgchem.8b01781Suche in Google Scholar

Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H···O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 1047–1059.10.1007/978-3-7091-6419-8_7Suche in Google Scholar

Locock, A.J., and Burns, P.C. (2003) Structures and synthesis of framework Rb and Cs uranyl arsenates and their relationships with their phosphate analogues. Journal of Solid State Chemistry, 175, 372–379.10.1016/S0022-4596(03)00383-9Suche in Google Scholar

Lussier, A.J., Lopez, R.A.K., and Burns, P.C. (2016) A revised and expanded structure hierarchy of natural and synthetic hexavalent uranium compounds. Canadian Mineralogist, 54, 177–283.10.3749/canmin.1500078Suche in Google Scholar

Maher, K., Bargar, J.R., and Brown, G.E. Jr. (2013) Environmental speciation of actinides. Inorganic Chemistry, 52, 3510–3532.10.1021/ic301686dSuche in Google Scholar PubMed

Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. Canadian Mineralogist, 45, 1307–1324.10.2113/gscanmin.45.5.1307Suche in Google Scholar

Obbade, S., Dion, C., Saadi, M., and Abraham, F. (2004) Synthesis, crystal structure and electrical characterization of Cs4((UO22(V2O7O2 a uranyl divanadate with chains of corner-sharing uranyl square bipyramids. Journal of Solid State Chemistry, 177, 1567–1574.10.1016/j.jssc.2003.12.007Suche in Google Scholar

Olds, T.A., Plášil, J., Kampf, A.R., Škoda, R., Burns, P.C., Čejka, J., Bourgoin, V., and Boulliard, J.-C. (2017) Gauthierite, KPb[(UO27O5(OH)7·8H2O, a new uranyl-oxide hydroxy-hydrate mineral from Shinkolobwe with a novel uranyl-anion sheet-topology, European Journal of Mineralogy, 29, 129–141.10.1127/ejm/2017/0029-2586Suche in Google Scholar

Olds, T., Plášil, J., Kampf, A.R., Spano, T., Haynes, P., Carlson, S.M., Burns, P.C., Simonetti, A., and Mills, O.P. (2018) Leesite, K(H2O)2[(UO24O2(OH)5·3H2O, a new K-bearing schoepite-family mineral from the Jomac mine, San Juan County, Utah, U. S.A. American Mineralogist, 103, 143–150.10.2138/am-2018-6083Suche in Google Scholar

Ondruš, P., Veselovský, F., Gabašová, A., Hloušek, J., Šrein, V., Vavřín, I., Skála, R., Sejkora, J., and Drábek, M. (2003) Primary minerals of the Jáchymov ore district. Journal of the Czech Geological Society, 48, 19–147.Suche in Google Scholar

Pagoaga, M.K., Appleman, D.E., and Stewart, J.M. (1987) Crystal structures and crystal chemistry of the uranyl-oxide hydrates becquerelite, billietite, and protasite. American Mineralogist, 72, 1230–1238.Suche in Google Scholar

Petříček, V., Dušek, M., and Palatinus, L. (2014) Crystallographic Computing System Jana 2006: general features. Zeitschrift für Kristallographie, 229, 345–352.10.1515/zkri-2014-1737Suche in Google Scholar

Plášil, J. (2014) Oxidation-hydration weathering of uraninite: the current state-of-knowledge. Journal of Geosciences, 59, 89–114.10.3190/jgeosci.163Suche in Google Scholar

Plášil, J. (2017a) Crystal structure of richetite revisited: Crystallographic evidence for the presence of pentavalent uranium. American Mineralogist, 102, 1171–1175.10.2138/am-2017-6092Suche in Google Scholar

Plášil, J. (2017b) A novel sheet topology in the structure of kamitugaite, PbAl[(UO25 (PO42.38(AsO40.62O2(OH)2(H2O)11.5 Journal of Geosciences, 62, 253–260.10.3190/jgeosci.246Suche in Google Scholar

Plášil, J. (2018a) Uranyl-oxide hydroxy-hydrate minerals: their structural complexity and evolution trends. European Journal of Mineralogy, 30, 237–251.10.1127/ejm/2017/0029-2690Suche in Google Scholar

Plášil, J. (2018b) The crystal structure of uranyl-oxide mineral schoepite, [(UO24O(OH)6 (H2O)6, revisited. Journal of Geosciences, 63, 65–73.10.3190/jgeosci.252Suche in Google Scholar

Plášil, J. (2019) Hydrogen bonding in lead uranyl-oxide mineral sayrite. Zeitschrift für Kristallographie, 234, 733–738. DOI: 10.1515/zkri-2019-0035.10.1515/zkri-2019-0035Suche in Google Scholar

Plášil, J., Škoda, R., Čejka, J., Bourgoin, V., and Boulliard, J.-C. (2016) Crystal structure of the uranyl-oxide mineral rameauite. European Journal of Mineralogy, 28, 959–967.10.1127/ejm/2016/0028-2568Suche in Google Scholar

Plášil, J., Kampf, A.R., Škoda, R., and Čejka, J. (2018) Nollmotzite, Mg[UV (UVIO2)2O4F3·4H2O, the first natural uranium oxide containing fluorine. Acta Crystallographica, B74, 362–369.10.1107/S2052520618007321Suche in Google Scholar

Pouchou, J.-L., and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” In K.F.J. Heinrich and D.E. Newbury, Eds., Electron Probe Quantitation, pp. 3l–75. Plenum Press.10.1007/978-1-4899-2617-3_4Suche in Google Scholar

Rigaku (2019) CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, U.K.Suche in Google Scholar

Rosenzweig, A., and Ryan, R.R. (1977) Vandenbrandeite CuUO2(OH)4 Crystal Structure Communications, 6, 53–56.Suche in Google Scholar

Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.10.1107/S0567739476001551Suche in Google Scholar

Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 3–8.Suche in Google Scholar

Weller, M.T., Light, M.E., and Gelbrich, T. (2000) Structure of uranium(VI) oxide dihydrate, UO3·2H2O; synthetic meta-schoepite [(UO24O(OH)6·5H2O. Acta Crystallographica, B6, 577–583.10.1107/S0108768199016559Suche in Google Scholar

Wronkiewicz, D.J., Bates, J.K., Wolf, S.F., and Buck, E.C. (1996) Ten-year results from unsaturated drip tests with UO2 at 90°C: implications for the corrosion of spent nuclear fuel. Journal of Nuclear Materials, 238, 78–95.10.1016/S0022-3115(96)00383-2Suche in Google Scholar

Wylie, E.M., and Burns, P.C. (2012) Crystal structures of six new uranyl selenate and selenite compounds and their relationship with uranyl mineral structures. Canadian Mineralogist, 50, 147–157.10.3749/canmin.50.1.147Suche in Google Scholar

Zhang, Y., Čejka, J., Lumpkin, G.R., Tran, T.T., Aharonovich, I., Karatchevtseva, I., Price, J.R., Scales, N., and Lu, K. (2016) Hydrothermal synthesis, structures and properties of two uranyl oxide-hydroxyl hydrate pahses with Co(II) or Ni(II) ions. New Journal of Chemistry, 40, 5357–5363.10.1039/C5NJ03055BSuche in Google Scholar

Zhang, Y., Aughterson, R., Karatchevtseva, I., Kong, L., Trong Tran, T., Čejka, J., Aharonovich, I., and Lumpkin, G.R. (2018) Uranyl-oxide hydrate phases with heavy lanthanide ions: [Ln(UO22O3(OH)]·0.5H2O (Ln = Tb, Dy, Ho and Yb). New Journal of Chemistry, 42, 12,267–13,184.10.1039/C8NJ01376DSuche in Google Scholar

Zhang, Y., Aughterson, R., Zhang, Z., Wei, T., Lu, K., Čejka, J., and Karatchevtseva, I. (2019) Syntheses, crystal structures and spectroscopic studies of uranyl-oxide hydrate phases with La(III)/Nd(III) ions. Inorganic Chemistry, 58, 10,812–10,821.10.1021/acs.inorgchem.9b01102Suche in Google Scholar PubMed

Received: 2019-10-02
Accepted: 2019-11-24
Published Online: 2020-04-02
Published in Print: 2020-04-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2020-7311/html
Button zum nach oben scrollen