Startseite Naturwissenschaften Chemically oscillating reactions in the formation of botryoidal malachite
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Chemically oscillating reactions in the formation of botryoidal malachite

  • Dominic Papineau EMAIL logo
Veröffentlicht/Copyright: 2. April 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The origin of banding patterns in malachite [Cu2CO3(OH)2] is an enduring problem in geology. While the bright green, vivid colors of this mineral have been attributed to the presence of Cu, no specific process has been proposed that can explain the perfect circularly concentric banding and geometrical shapes in botryoidal malachite. These patterns of concentric equidistant laminations are comparable to those arising from chemically oscillating experiments using the classical reactants of the Belousov-Zhabotinsky (B-Z) reaction. Through optical microscopy and micro-Raman imaging, this contribution documents that the geometric centers of the self-similar geometric patterns are often composed of organic matter. Carbon isotopes and trace elements further suggest that non-biological decarboxylation reactions of biological organic matter took place during diagenesis. Hence, the morphological and chemical characteristics of chemically oscillating reactions offer a plausible explanation for the formation of botryoidal malachite and abiotic environmental decarboxylation reactions.


† Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html


Acknowledgments

I acknowledge fruitful discussions on this topic with Z. She, K. Devine, J. Götze, G. Shields, N. Lane, E. Oelkers, R.M. Hazen, J. Cleaves, M. Chan, and T. Kee as well as continuing support from the LCN and UCL. Z. She and B. Shen are acknowledged for preparing solutions and providing preliminary trace element analyses. A.-L. Jourdan performed stable isotope analyses and G. Tarbuck conducted ICP-MS and ICP-OES analyses, both of whom are gratefully acknowledged. J.M. McArthur and two anonymous reviewers are kindly thanked for constructive comments that improved this manuscript.

References cited

Agladze, K.I., Krinsky, V.I., and Pertsov, A.M. (1984) Chaos in the non-stirred Belousov-Zhabotinsky reaction is induced by interaction of waves and stationary dissipative structures. Nature, 308, 834–835.10.1038/308834a0Suche in Google Scholar

Akai, J., Akiyama, S., Tsuchiyama, A., and Akai, K. (2013) Ocean manganese nodules as stromatolite with a fractal like-signature. Physics and Chemistry of the Earth, 58-60, 42–48.10.1016/j.pce.2013.04.004Suche in Google Scholar

Andrews, J.E., Kendall, A. C., and Hall, A. (2014) Microbial crusts with Frutexites(?) and iron staining in chalks: Albian-Cenomanian boundary, Hunstanton, U.K. Geological Magazine 152, 1–11. DOI: 10.1017/S0016756814000107.10.1017/S0016756814000107Suche in Google Scholar

Belmonte, A., Ouyang, Q., and Flesselles, J.-M. (1997) Experimental survey of spiral dynamics in the Belousov-Zhabotinsky reaction. Journal de Physique II, EDP Sciences, 7, 1425–1468.10.1051/jp2:1997195Suche in Google Scholar

Bernard, S., Benzerara, K., Beyssac, O., Menguy, N., Guyot, F., Brown, G.E. Jr., and Goffé, B. (2007) Exceptional preservation of fossil plant spores in high pressure metamorphic rocks. Earth and Planetary Science Letters, 262, 257–272.10.1016/j.epsl.2007.07.041Suche in Google Scholar

Brasier, M.D., Green, O.R., Lindsay, J.F., McLoughlin, N., Steele, A., and Stoakes, C. (2005) Critical testing of Earth’s oldest putative fossil assemblage from the ~3.5 Apex chert, Chinaman Creek, Western Australia. Precambrian Research, 140, 55–102.10.1016/j.precamres.2005.06.008Suche in Google Scholar

Briggs, T. S., and Rauscher, W.C. (1973) An oscillating iodine clock. Journal of Chemical Education, 50, 496.10.1021/ed050p496Suche in Google Scholar

Chou Chen, I., Kuksenok, O., Yashin, V.V., Moslin, R.M., Balazs, A.C., and Van Vliet, K.J. (2011) Shape- and size-dependent patterns in self-oscillating polymer gels. Soft Matter, 7, 3141–3146.10.1039/c0sm01007cSuche in Google Scholar

Djokic, T., Van Kranendonk, M.J., Campbel, K.A., Walter, M.R., and Ward, C.R. (2017) Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nature Communications, 15263.10.1038/ncomms15263Suche in Google Scholar PubMed PubMed Central

Dodd, M.S., Papineau, D., She, Z., Manikyamba, C., Wan, Y., O’Neil, J., Karhu, J., Rizo, H., and Pirajno, F. (2019) Widespread occurrences of variably crystalline 13C-depleted graphitic carbon in banded iron formations. Earth and Planetary Science Letters, 512, 163–174.10.1016/j.epsl.2019.01.054Suche in Google Scholar

Epstein, I.R., Kustin, K., De Kepper, P., and Orbán, M. (1983) Oscillating chemical reactions. Scientific American, 112–123.10.1038/scientificamerican0383-112Suche in Google Scholar

Garcia-Ruiz, J.M. (1994) Inorganic self-organisation in Precambrian cherts. Origins of Life and Evolution of the Biosphere, 24, 451–467.10.1007/BF01582030Suche in Google Scholar

Gaweda, A., and Rzymelka, J.A. (1992) Bituminous agates from rhyolites in the environs of Nowy Kosciol, Lower Silesia. Mineralogia Polonica, 23, 73–84.Suche in Google Scholar

Götze, J. (2011) Agate—fascination between legend and science. In J. Zenz, Ed., Agates III, p. 19–133. Bode-Verlag.Suche in Google Scholar

Götze, J., Möckel, R., Vennemann, T., and Müller, A. (2015) Origin and geochemistry of agate in Permian voclanic rocks of the Sub-Erzgebirge basin, Saxony (Germany). Chemical Geology, 428, 77–91.10.1016/j.chemgeo.2016.02.023Suche in Google Scholar

Hartman, R.J., Kanning, E.W., and Klee, F.G. (1934) The Liesegang phenomenon applied to banded malachite. Journal of Chemical Education, 11, 346–350.10.1021/ed011p346Suche in Google Scholar

Heim, C., Quéric, N.-V., Ionescu, D., Schafer, N., and Reitner, J. (2017) Frutexites-like structures formed by iron oxidizing biofilms in the continental subsurface (Äspö Hard Rock Laboratory, Sweden) PLOS One. DOI: 10.1371/journal.pone.0177542.10.1371/journal.pone.0177542Suche in Google Scholar PubMed PubMed Central

Hemachandran, K., and Chetal, A.R. (1986) X‑ray K-absorption study of copper in malachite mineral. Physica Status Solidi, 136, 181–185.10.1002/pssb.2221360120Suche in Google Scholar

Jakubowicz, M., Belka, Z., and Berkowski, B. (2014) Frutexites encrustations on rugose corals (Middle Devonian, southern Morocco): complex growth of microbial microstromatolites. Facies, 60, 631–650.10.1007/s10347-013-0381-1Suche in Google Scholar

Jamtveit, B., and Hammer, Ø. (2012) Sculpting of rocks by reactive fluids. Geochemical Perspectives, 1, 341–480.10.7185/geochempersp.1.3Suche in Google Scholar

Jettestuen, E., Jamtveit, B., Podladchikov, Y.Y., deVilliers, S., Amundsen, H.E.F., and Meakin, P. (2006) Growth and characterization of complex mineral surfaces. Earth and Planetary Science Letters, 249, 108–118.10.1016/j.epsl.2006.06.045Suche in Google Scholar

Kitahata, H., Aihara, R., Magome, N., and Yoshikawa (2002) Convective and periodic motion driven by a chemical wave. Journal of Chemical Physics, 116, 5666–5672.10.1063/1.1456023Suche in Google Scholar

Körös, E., and Orbán, M. (1978) Uncatalysed oscillatory chemical reactions. Nature, 273, 371–372.10.1038/273371b0Suche in Google Scholar

Liesegang, R.E. (1910) Die Entstehung der Achate. Zentralblatt für Mineralogie, 11, 593–597.Suche in Google Scholar

Liesegang, R.E. (1915) Die Achate. Verlag von Theodor Steinkopff, Dresden und Leipzig, 122 S.Suche in Google Scholar

Orbán, M., Kurin-Csörgei, K., Zhabotinsky, A.M., and Epstein, I.R. (2001) A new chemical system for studying pattern formation: Bromate-hypophosphite-acetone-dual catalyst. Faraday Discussion, 120, 11–19.10.1039/b102885pSuche in Google Scholar

Papineau, D., DeGregorio, B.T., Cody, G.D., O’Neil, J., Steele, A., Stroud, R.M., and Fogel, M.L. (2011) Young poorly crystalline graphite in the >3.8 Gyr old Nuvvuagittuq banded iron formation, Nature Geoscience, 4, 376–379.10.1038/ngeo1155Suche in Google Scholar

Papineau, D., Purohit, R., Fogel, M.L., and Shields, G.A. (2013) High phosphate availability as a possible cause for massive cyanobacterial production of oxygen in the Paleoproterozoic atmosphere. Earth and Planetary Science Letters 362, 225-236.10.1016/j.epsl.2012.11.050Suche in Google Scholar

Papineau, D., De Gregorio, B.T., Fearn, S., Kilcoyne, D., Purohit, R., and Fogel, M.L. (2016) Nanoscale petrographic and geochemical insights on the origin of Paleoproterozoic stromatolitic phosphorites from Aravalli, India. Geobiology, 14, 3–32. DOI: 10.1111/gbi12164.10.1111/gbi12164Suche in Google Scholar

Papineau, D., She, Z., and Dodd, M.S. (2017) Chemically oscillating reactions during the diagenetic oxidation of organic matter and in the formation of granules in late Paleoproterozoic chert from Lake Superior. Chemical Geology, 470, 33–54.10.1016/j.chemgeo.2017.08.021Suche in Google Scholar

Plet, C., Grice, K., Pages, A., Ruebsam, W., Coolen, M.J.L., and Schwark, L. (2016) Microbially-mediated fossil-bearing carbonate concretions and their significance for paleoenvironmental reoncstructions: A multi-proxy organic and inorganic geochemical appraisal. Chemical Geology, 426, 95–108.10.1016/j.chemgeo.2016.01.026Suche in Google Scholar

Reolid, M. (2011) Palaeoenvironmental contexts for microbial communities from Fe-Mn crusts of Middle-Upper Jurassic hardgrounds (Beltic-Rifian Cordillera). Revista Española de Paleontología, 26, 135–160.Suche in Google Scholar

Richter-Feig, J., Möckel, R., Götze, J., and Heide, G. (2018) Investigation of fluids in microcrystalline and microcrystalline quartz in agate using thermogravimetry-massspectrometry. Minerals, 8, 72. DOI: 10.3390/min8020072.10.3390/min8020072Suche in Google Scholar

Schopf, J.W., and Kudryavtsev, A.B. (2009) Confocal laser scanning microscopy and Raman imagery of ancient microscopic fossils. Precambrian Research, 173, 39–49.10.1016/j.precamres.2009.02.007Suche in Google Scholar

Seilacher, A. (2001) Concretion morphologies reflecting diagenetic and epigenetic pathways. Sedimentary Geology, 143, 41–57.10.1016/S0037-0738(01)00092-6Suche in Google Scholar

Walter, M.R., and Awramik, S.M. (1979) Frutexites from stromatolites of the Gunflint iron formation of Canada, and its biological affinities. Precambrian Research, 9, 23–33.10.1016/0301-9268(79)90049-4Suche in Google Scholar

Zaikin, A.N., and Zhabotinsky, A.M. (1970) Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature, 225, 535.10.1038/225535b0Suche in Google Scholar PubMed

Zhabotinsky, A.M. (1991) A history of chemical oscillations and waves. Chaos, 1, 379–386.10.1063/1.165848Suche in Google Scholar PubMed

Received: 2019-03-04
Accepted: 2019-11-18
Published Online: 2020-04-02
Published in Print: 2020-04-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.2.2026 von https://www.degruyterbrill.com/document/doi/10.2138/am-2020-7029/html
Button zum nach oben scrollen