Changes in the cell parameters of antigorite close to its dehydration reaction at subduction zone conditions
-
Tingting Shen
, Cong Zhang, Jing Chen
, Jörg Hermann , Lifei Zhang , José Alberto Padrón-Navarta, Li Chen
, Jun Xu und Jingsui Yang
Abstract
The unit-cell parameter a of antigorite (usually expressed as the polysome m value) has been determined as a function of temperature (T) and pressure (P) in the range of 600–650 °C, 25–45 kbar in weeklong piston-cylinder experiments. A well-characterized natural antigorite (with m = 16 and less abundant m = 15) was used as a starting material that coexisted with olivine, chlorite, Ti-humite, and aqueous fluid at run conditions. Transmission electron microscope (TEM) measurements on selected focused ion beam (FIB) wafers showed that antigorite m values after the experiments varied between 14 and 22. More than 40 punctual analyses for each run condition were acquired to determine the range and the primary m value. The most frequent antigorite m-value decreased systematically from 17–19 at 600 °C to 15–16 at 650 °C. The spacing of the m-isolines is getting narrower as the antigorite breakdown reaction is approached. The topology of the m-isolines is similar to that previously characterized for the simple MgO-SiO2-H2O (MSH) system. However, the isolines are shifted to about 50–100 °C higher temperatures due to the incorporation of Al into antigorite. Powder samples and FIB wafers of natural antigorite from the Tianshan UHP belt (China) with peak metamorphic conditions of ~35 kbar, ~520 °C were also investigated with TEM. Low Al-antigorite formed at peak metamorphic conditions displays a peak m value of 20–21, whereas high-Al antigorite formed during isothermal decompression displays a lower m value of 19. Combination of our results with the published data of m values from metamorphic antigorite that experienced various conditions allowed construction of a P-T-m diagram that can be used in future studies to better constrain formation conditions of serpentinites. The decrease of m values and the increase of Al in antigorite with increasing temperature result in small, continuous dehydration whereby the H2O content of antigorite changes from 12.4 to 12.1 wt%. Therefore, it is expected that a pore fluid is present during the prograde deformation of serpentinites. TEM observations showed that antigorite adjusted its Al content by segregation of chlorite at the nanoscale. Together with the observation that multiple m values are always present in a single sample, this result indicates that full equilibration of antigorite at the micrometer-scale is rare, with important implications for the interpretation of geochemical signatures obtained by in situ techniques.
Acknowledgments
This study was supported by the National Natural Science Foundation of China (Nos. 41872067, 41572051, 41972064, 41630207, 41703053, 41720104009, 41802070), Project of China Geological Survey (No. DD20190006), and Foundation of Chinese Academy of Geological Sciences (Nos. J 1701, YYWF201702). We thank the China Scholarship Council for supporting the 12 mo visit of T. T. Shen at RSES, The Australian National University. We thank M. Mellini and an anonymous reviewer and associate editor T. Müller for constructive comments that helped improve the quality of the paper.
References cited
Alt, J.C., Garrido, C.J., Shanks, W.C., Turchyn, A., Padrón-Navarta, J.A., López Sánchez-Vizcaíno, V., Gómez Pugnaire, M.T., and Marchesi, C. (2012) Recycling of water, carbon, and sulfur during subduction of serpentinites: A stable isotope study of Cerro del Almirez, Spain. Earth and Planetary Science Letters, 327-328, 50–60.10.1016/j.epsl.2012.01.029Suche in Google Scholar
Amiguet, E., Reynard, B., Caracas, R., Van de Moortèle, B., Hilairet, N., and Wang, Y. (2012) Creep of phyllosilicates at the onset of plate tectonics. Earth and Planetary Science Letters, 345-348, 142–150.10.1016/j.epsl.2012.06.033Suche in Google Scholar
Amiguet, E., Van De Moortèle, B., Cordier, P., Hilairet, N., and Reynard, B. (2014) Deformation mechanisms and rheology of serpentines in experiments and in nature. Journal of Geophysical Research: Solid Earth, 119(6), 4640–4655.10.1002/2013JB010791Suche in Google Scholar
Aruja, E. (1944) An X‑ray study of the crystal structure of antigorite. Mineralogical Magazine, 27, 65–74.10.1180/minmag.1945.027.188.03Suche in Google Scholar
Auzende, A., Devouard, B., Guillot, S., Daniel, I., Baronnet, A., and Lardeaux, J.M. (2002) Serpentinites from Central Cuba: petrology and HRTEM study. European Journal of Mineralogy, 14, 905–914.10.1127/0935-1221/2002/0014-0905Suche in Google Scholar
Auzende, A., Guillot, S., Devouard, B., and Baronnet, A. (2006) Serpentinites in an Alpine convergent setting: effects of metamorphic grade and deformation on microstructures. European Journal of Mineralogy, 18, 21–33.10.1127/0935-1221/2006/0018-0021Suche in Google Scholar
Bebout, G.E., Bebout, A.E., and Graham, C.M. (2007) Cycling of B, Li, and LILE (K, Cs, Rb, Ba, Sr) into subduction zones: SIMS evidence from micas in high-P/T metasedimentary rocks. Chemical Geology, 239, 284–304.10.1016/j.chemgeo.2006.10.016Suche in Google Scholar
Bezacier, L., Reynard, B., Cardon, H., Montagnac, G., and Bass, J.D. (2013) High-pressure elasticity of serpentine and seismic properties of the hydrated mantle wedge. Journal of Geophysical Research: Solid Earth, 118, 527–535. doi:10.1002/jgrb.50076.10.1002/jgrb.50076Suche in Google Scholar
Bonatti, E., and Crane, K. (1984) Oceanic Fracture Zones. Scientific American, 250, 40–51.10.1038/scientificamerican0584-40Suche in Google Scholar
Bose, K., and Navrotsky, A. (1998) Thermochemistry and phase equilibria of hydrous phases in the system MgO-SiO2-H2O: Implications for volatile transport to the mantle. Journal of Geophysical Research, 103, 9713–9719.10.1029/98JB00506Suche in Google Scholar
Bretscher, A., Hermann, J., and Pettke, T. (2018) The influence of oceanic oxidation on serpentinite dehydration during subduction. Earth and Planetary Science Letters, 499, 173–184.10.1016/j.epsl.2018.07.017Suche in Google Scholar
Bromiley, G.D., and Pawley, A.R. (2003) The stability of antigorite in the systems MgO-SiO2-H2O (MSH) and MgO-Al2O3-SiO2-H2O. American Mineralogist, 88, 99–108.10.2138/am-2003-0113Suche in Google Scholar
Capitani, G., and Mellini, M. (2004) The modulated crystal structure of antigorite; the m = 17 polysome. American Mineralogist, 89, 147–158.10.2138/am-2004-0117Suche in Google Scholar
Capitani, G., and Mellini, M. (2006) The crystal structure of a second antigorite polysome m = 16), by single-crystal synchrotron diffraction. American Mineralogist, 91, 394–399.10.2138/am.2006.1919Suche in Google Scholar
Chen, L., Xu, J., and Chen, J. (2015) Applications of scanning electron microscopy in earth sciences. Science China: Earth Sciences, 58, 1768–1778, doi: 10.1007/s11430-015-5172-9.10.1007/s11430-015-5172-9Suche in Google Scholar
Debret, B., Andreani, M., Godard, M., Nicollet, C., Schwartz, S., and Lafay, R. (2013) Trace element behavior during serpentinization/de-serpentinization of an eclogitized oceanic lithosphere: A LA-ICPMS study of the Lanzo ultramafic massif (Western Alps). Chemical Geology, 357, 117–133.10.1016/j.chemgeo.2013.08.025Suche in Google Scholar
Debret, B., Bolfan-Casanova, N., Padrón-Navarta, J.A., Martin-Hernandez, F., Andreani, M., Garrido, C.J., López Sánchez-Vizcaíno, V., Gómez-Pugnaire, M.T., Muñoz, M., and Trcera, N. (2015) Redox state of iron during high-pressure serpentinite dehydration. Contributions to Mineralogy and Petrology, 169.10.1007/s00410-015-1130-ySuche in Google Scholar
Deschamps, F., Guillot, S., Godard, M., Chauvel, C., Andreani, M., and Hattori, K. (2010) In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chemical Geology, 269, 262–277.10.1016/j.chemgeo.2009.10.002Suche in Google Scholar
Deschamps, F., Guillot, S., Godard, M., Andreani, M., and Hattori, K. (2011) Serpentinites act as sponges for fluid-mobile elements in abyssal and subduction zone environments. Terra Nova, 23, 171–178.10.1111/j.1365-3121.2011.00995.xSuche in Google Scholar
Deschamps, F., Godard, M., Guillot, S., Chauvel, C., Andreani, M., Hattori, K., Wunder, B., and France, L. (2012) Behavior of fluid-mobile elements in serpentines from abyssal to subduction environments: Examples from Cuba and Dominican Republic. Chemical Geology, 312-313, 93–117.10.1016/j.chemgeo.2012.04.009Suche in Google Scholar
Deschamps, F., Godard, M., Guillot, S., and Hattori, K. (2013) Geochemistry of subduction zone serpentinites: A review. Lithos, 178, 96–127.10.1016/j.lithos.2013.05.019Suche in Google Scholar
Evans, B.W. (2004) The serpentinite multisystem revisited: chrysotile is metastable. International Geology Review, 46, 479–506.10.2747/0020-6814.46.6.479Suche in Google Scholar
Evans, B.W., Johannes, W., Oterdoom, H., and Tommsdorff, V. (1976) Stability of crysotile and antigorite in the serpentinite multisystem. Schweizerische Mineralogische und Petrographische Mitteilungen, 56, 79–93.Suche in Google Scholar
Evans, B.W., Hattori, K., and Baronnet, A. (2013) Serpentinite: What, Why, Where? Elements, 9, 99–106.10.2113/gselements.9.2.99Suche in Google Scholar
Frost, B.R. (1975) Contact metamorphism of serpentinite, chloritic blackwall and rodingite at Paddy-Go-Easy Pass, Central Cascades, Washington. Journal of Petrology, 16, 272–313.10.1093/petrology/16.1.272Suche in Google Scholar
Garrido, C.J., López Sánchez-Vizcaíno, V., Gómez-Pugnaire, M.T., Trommsdorff, V., Alard, O., Bodinier, J.L., and Godard, M. (2005) Enrichment of HFSE in chloriteharzburgite produced by high-pressure dehydration of antigorite-serpentinite: Implications for subduction magmatism. Geochemistry, Geophysics, Geosystems, 6, Q01J15. doi:10.1029/2004GC000791.10.1029/2004GC000791Suche in Google Scholar
Ghaderi, N., Zhang, H., and Sun, T. (2015) Relative stability and contrasting elastic properties of serpentine polymorphs from first-principles calculations. Journal of Geophysical Research: Solid Earth, 120, 4831–4842.10.1002/2015JB012148Suche in Google Scholar
Harvey, J., Garrido, C.J., Savov, I., Agostini, S., Padrón-Navarta, J.A., Marchesi, C., López Sánchez-Vizcaíno, V., and Gómez-Pugnaire, M.T. (2014) 11B-rich fluids in subduction zones: The role of antigorite dehydration in subducting slabs and boron isotope heterogeneity in the mantle. Chemical Geology, 376, 20–30.10.1016/j.chemgeo.2014.03.015Suche in Google Scholar
Hattori, K.H., and Guillot, S. (2003) Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology, 31, 525–528.10.1130/0091-7613(2003)031<0525:VFFAAC>2.0.CO;2Suche in Google Scholar
Hattori, K.H., and Guillot, S. (2007) Geochemical character of serpentinites associated with high- to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: recycling of elements in subduction zones. Geochemistry, Geophysics, Geosystems, 8, http://dx.doi.org/10.1029/2007GC00159410.1029/2007GC001594Suche in Google Scholar
Hermann, J., Müntener, O., and Scambelluri, M. (2000) The importance of serpentine mylonites for subduction and exhumation of oceanic crust. Tectonophysics, 327, 225–238.10.1016/S0040-1951(00)00171-2Suche in Google Scholar
Hermann, J., Rubatto, D., and Trommsdorff, V. (2006) Sub-solidus Oligocene zircon formation in garnet peridotite during fast decompression and fluid infiltration (Duria, Central Alps). Mineralogy and Petrology, 88, 181–206.10.1007/s00710-006-0155-3Suche in Google Scholar
Hilairet, N., Daniel, I., and Reynard, B. (2006) Equation of state of antigorite, stability field of serpentines, and seismicity in subduction zones. Geophysical Research Letters, 33, L02302. doi:10.1029/2005GL024728.10.1029/2005GL024728Suche in Google Scholar
Hilairet, N., Reynard, B., Wang, Y.B., Daniel, I., Merkel, S., Nishiyama, N., and Petitgirard, S. (2007) High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science, 318, 1910–1913.10.1126/science.1148494Suche in Google Scholar
Hyndman, R.D., and Peacock, S.M. (2003) Serpentinization of the forearc mantle. Earth and Planetary Science Letters, 212, 417–432.10.1016/S0012-821X(03)00263-2Suche in Google Scholar
Iwamori, H., and Zhao, D. (2000) Melting and seismic structure beneath the northeast Japan arc. Geophysical Research Letters, 27, 425–428.10.1029/1999GL010917Suche in Google Scholar
Jahanbagloo, C., and Zoltai, T. (1968) The crystal structure of a hexagonal Al-serpentine. American Mineralogist, 53, 14–24.Suche in Google Scholar
Janecky, D.R., and Seyfried, W.E. (1986) Hydrothermal serpentinization of peridotite within the oceanic crust: Experimental investigations of mineralogy and major element chemistry. Geochimica et Cosmochimica Acta, 50, 1357–1378.10.1016/0016-7037(86)90311-XSuche in Google Scholar
Kawakatsu, H., and Watada, S. (2007) Seismic evidence for deep-water transportation in the mantle. Science, 316, 1468–1471.10.1126/science.1140855Suche in Google Scholar PubMed
Kodolányi, J., and Pettke, T. (2011) Loss of trace elements from serpentinites during fluid-assisted transformation of chrysotile to antigorite—An example from Guatemala. Chemical Geology, 284, 351–362.10.1016/j.chemgeo.2011.03.016Suche in Google Scholar
Kunze, V.G. (1956) Die gewellte struktur des antigorits, I. Zeitschrift für Kristallog-raphie, 108, 82–107.10.1524/zkri.1956.108.1-2.82Suche in Google Scholar
Kunze, V.G. (1958) Die gewellte struktur des antigorits, II. Zeitschrift für Kristallographie, 110, 282–320.10.1524/zkri.1958.110.16.282Suche in Google Scholar
Kunze, V.G. (1961) Antigorit. Strukturtheoretische Grundlagen und ihre praktische Bedeutung fdr die weitere Serpentin-Forschung. Fortschritte der Mineralogie, 39, 206–324.Suche in Google Scholar
López Sánchez-Vizcaíno, V., Trommsdorff, V., Gómez-Pugnaire, M. T., Garrido, C.J., Müntener, O., and Connolly, J.A.D. (2005) Petrology of titanian clinohumite and olivine at the high-pressure breakdown of antigorite serpentinite to chlorite harzburgite (Almirez Massif, S. Spain). Contributions to Mineralogy and Petrology, 149, 627–646.10.1007/s00410-005-0678-3Suche in Google Scholar
Marchesi, C., Garrido, C.J., Padrón-Navarta, J.A., López Sánchez-Vizcaíno, V., and Gómez-Pugnaire, M.T. (2013) Element mobility from seafloor serpentinization to high-pressure dehydration of antigorite in subducted serpentinite: Insights from the Cerro del Almirez ultramafic massif (southern Spain). Lithos, 178, 128–142.10.1016/j.lithos.2012.11.025Suche in Google Scholar
Maurice, J., Bolfan-Casanova, N., Padrón-Navarta, J.A., Manthilake, G., Hammouda, T., Hénot, J.M., and Andrault, D. (2018) The stability of hydrous phases beyond antigorite breakdown for a magnetite-bearing natural serpentinite between 6.5 and 11 GPa. Contributions to Mineralogy and Petrology, 173, 86.10.1007/s00410-018-1507-9Suche in Google Scholar
Mellini, M. (1986) Chrysotile and polygonal serpentine from the Balangero serpentinite. Mineralogical Magazine, 50, 301–305.10.1180/minmag.1986.050.356.17Suche in Google Scholar
Mellini, M., Trommsdorff, V., and Compagnoni, R. (1987) Antigorite polysomatism: Behaviour during progressive metamorphism. Contributions to Mineralogy and Petrology, 97, 147–155.10.1007/BF00371235Suche in Google Scholar
Messiga, B., Kienast, J.R., Rebay, G., Riccardi, P., and Tribuzio, R. (1999) Cr-rich magnesiochloritoïd eclogites from the Monviso ophiolites (Western Alps, Italy). Journal of Metamorphic Geology, 17, 287–299.10.1046/j.1525-1314.1999.00198.xSuche in Google Scholar
Nestola, F., Angel, R. J., Zhao, J., Garrido, C.J., Sánchez-Vizcaíno, V.L., Capitani, G., and Mellini, M. (2010) Antigorite equation of state and anomalous softening at 6 GPa: an in situ single-crystal X‑ray diffraction study. Contributions to Mineralogy and Petrology, 160, 33–43.10.1007/s00410-009-0463-9Suche in Google Scholar
Padrón-Navarta, J.A., and Hermann, J. (2017) A subsolidus olivine water solubility equation for the Earth’s upper mantle. Journal of Geophysical Research: Solid Earth, 122, 9862–9880. https://doi.org/10.1002/2017JB01451010.1002/2017JB014510Suche in Google Scholar
Padrón-Navarta, J.A., López Sánchez-Vizcaíno, V., Garrido, C.J., Gómez-Pugnaire, M.T., Jabaloy, A., Capitani, G., and Mellini, M. (2008) Highly ordered antigorite from Cerro del Almirez HP–HT serpentinites, SE Spain. Contributions to Mineralogy and Petrology, 156, 679–688.10.1007/s00410-008-0309-xSuche in Google Scholar
Padrón-Navarta, J.A., Hermann, J., Garrido, C.J., López Sánchez-Vizcaíno, V., and Gómez-Pugnaire, M. T. (2010) An experimental investigation of antigorite dehydration in natural silica-enriched serpentinite. Contributions to Mineralogy and Petrology, 159, 25–42.10.1007/s00410-009-0414-5Suche in Google Scholar
Padrón-Navarta, J.A., López Sánchez-Vizcaíno, V., Garrido, C.J., and Gómez-Pugnaire, M.T. (2011) Metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del Almirez, Nevado-Filabride Complex, Southern Spain). Journal of Petrology, 52, 2047–2078.10.1093/petrology/egr039Suche in Google Scholar
Padrón-Navarta, J.A., Tommasi, A., Garrido, C.J., and López Sánchez-Vizcaíno, V. (2012) Plastic deformation and development of antigorite crystal preferred orientation in high-pressure serpentinites. Earth and Planetary Science Letters, 349-350, 75–86.10.1016/j.epsl.2012.06.049Suche in Google Scholar
Padrón-Navarta, J.A., López Sánchez-Vizcaíno, V., Hermann, J., Connolly, J.A.D., Garrido, C.J., Gómez-Pugnaire, M.T., and Marchesi, C. (2013) Tschermak’s substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites. Lithos, 178, 186–196.10.1016/j.lithos.2013.02.001Suche in Google Scholar
Padrón-Navarta, J.A., Tommasi, A., Garrido, C.J., and Mainprice, D. (2015) On topotaxy and compaction during antigorite and chlorite dehydration: an experimental and natural study. Contributions to Mineralogy and Petrology, 169, 35. doi: 10.1007/s00410-015-1129-4.10.1007/s00410-015-1129-4Suche in Google Scholar
Perrillat, J., Daniel, I., Koga, K., Reynard, B., Cardon, H., and Crichton, W. (2005) Kinetics of antigorite dehydration: A real-time X‑ray diffraction study. Earth and Planetary Science Letters, 236, 899–913.10.1016/j.epsl.2005.06.006Suche in Google Scholar
Peters, D., Bretscher, A., John, T., Scambelluri, M., and Pettke, T. (2017) Fluid-mobile elements in serpentinites: Constraints on serpentinisation environments and element cycling in subduction zones. Chemical Geology, 466, 654–666.10.1016/j.chemgeo.2017.07.017Suche in Google Scholar
Reynard, B., and Wunder, B. (2006) High-pressure behavior of synthetic antigorite in the MgO-SiO2-H2O system from Raman spectroscopy. American Mineralogist, 91, 459–462.10.2138/am.2006.2069Suche in Google Scholar
Rüpke, L.H., Morgan, J.P., Hort, M., and Connolly, J.A.D. (2004) Serpentine and the subduction zone water cycle. Earth and Planetary Science Letters, 223, 17–34.10.1016/j.epsl.2004.04.018Suche in Google Scholar
Scambelluri, M., Müntener, O., Hermann, J., Piccardo, G.B., and Trommsdorff, V. (1995) Subduction of water into the mantle: History of an Alpine peridotite. Geology, 23, 459–462.10.1130/0091-7613(1995)023<0459:SOWITM>2.3.CO;2Suche in Google Scholar
Scambelluri, M., Rampone, E., and Piccardo, G.B. (2001) Fluid and element cycling on subducted serpentinite: a trace-element study of the Erro-Tobbio high-pressure ultramafites (Western Alps, NW Italy). Journal of Petrology, 42, 55–67.10.1093/petrology/42.1.55Suche in Google Scholar
Scambelluri, M., Fiebig, J., Malaspina, N., Müntener, O., and Pettke, T. (2004a) Serpentinite subduction: Implications for fluid processes and trace-element recycling. International Geology Review, 46, 595–613.10.2747/0020-6814.46.7.595Suche in Google Scholar
Scambelluri, M., Müntener, O., Ottolini, L., Pettke, T. T., and Vannucci, R. (2004b) The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth and Planetary Science Letters, 222, 217–234.10.1016/j.epsl.2004.02.012Suche in Google Scholar
Scambelluri, M., Pettke, T., Rampone, E., Godard, M., and Reusser, E. (2014) Petrology and trace element budgets of high-pressure peridotites indicate subduction dehydration of serpentinized mantle (Cima di Gagnone, Central Alps, Switzerland). Journal of Petrology, 55, 459–498.10.1093/petrology/egt068Suche in Google Scholar
Scambelluri, M., Cannaò, E., and Gilio, M. (2019) The water and fluid-mobile element cycles during serpentinite subduction. A review. European Journal of Mineralogy, https://doi.org/10.1127/ejm/2019/0031-284210.1127/ejm/2019/0031-2842Suche in Google Scholar
Schmidt, M.W., and Poli, S. (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163, 361–379.10.1016/S0012-821X(98)00142-3Suche in Google Scholar
Schwartz, S., Allemand, P., and Guillot, S. (2001) Numerical model of effect of serpentinites on the exhumation of eclogitic rocks: insights from the Monviso ophiolitic massif (Western Alps). Tectonophysics, 342, 193–206.10.1016/S0040-1951(01)00162-7Suche in Google Scholar
Schwartz, S., Guillot, S., Reynard, B., Lafay, R., Debret, B., Nicollet, C., Lanari, P., and Auzende, A.L. (2013) Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos, 178, 197–210.10.1016/j.lithos.2012.11.023Suche in Google Scholar
Scicchitano, M.R., Rubatto, D., Hermann, J., Shen, T.T., Padrón-Navarta, J.A., Williams, I.S., and Zheng, Y.F. (2018) In situ oxygen isotope determination in serpentine minerals by ion microprobe: reference materials and applications to ultrahigh-pressure serpentinites. Geostandards and Geoanalytical Research, 42, 459–479. https://doi.org/10.1111/ggr.1223210.1111/ggr.12232Suche in Google Scholar
Shen, T.T., Hermann, J., Zhang, L.F., Padrón-Navarta, J.A., and Chen, J. (2014) FTIR spectroscopy of Ti-chondrodite, Ti-clinohumite, and olivine in deeply subducted serpentinites and implications for the deep water cycle. Contributions to Mineralogy and Petrology, 167, 992.10.1007/s00410-014-0992-8Suche in Google Scholar
Shen, T.T., Hermann, J., Zhang, L.F., Lü, Z., Padrón-Navarta, J.A., Xia, B., and Bader, T. (2015) UHP metamorphism documented in Ti-chondrodite- and Ti-clinohumite-bearing serpentinized ultramafic rocks from Chinese Southwestern Tianshan. Journal of Petrology, 56, 1425–1458.10.1093/petrology/egv042Suche in Google Scholar
Shen, T.T., Zhang, L.F., and Chen, J. (2016) Metamorphism of subduction zone serpentinite. Acta Petrologica Sinica, 32, 1206–1218 (in Chinese with English abstract).Suche in Google Scholar
Spear, F.S. (1993) Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths, 799 p. Mineralogical Society of America, Monograph Series.Suche in Google Scholar
Syracuse, E.M., van Keken, P.E., and Abers, G.A. (2010) The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors, 183, 73–90.10.1016/j.pepi.2010.02.004Suche in Google Scholar
Thompson, J.B. Jr. (1978) Biopyriboles and polysomatic series. American Mineralogist, 63, 239–249.Suche in Google Scholar
Trommsdorff, V. (1983) Metamorphose magnesiumreicher Gesteine: Kritischer Vergleich von Natur, Experiment und thermodynamischer Datenbasis. Fortschritte der Mineralogie, 61, 283–308.Suche in Google Scholar
Trommsdorff, V., and Evans, B.W. (1972) Progressive metamorphism of antigorite schist in the Bergell tonalite aureole (Italy). American Journal of Science, 272, 423–437.10.2475/ajs.272.5.423Suche in Google Scholar
Trommsdorff, V., and Evans, B.W. (1974) Alpine metamorphism of peridotite rocks. Schweizerische Mineralogische und Petrographische Mitteilungen, 54, 333–352.Suche in Google Scholar
Trommsdorff, V., and Evans, B.W. (1980) Titanian hydroxyl-clinohumite: Formation and breakdown in antigorite rocks (Malenco, Italy). Contributions to Mineralogy and Petrology, 72, 229–242.10.1007/BF00376142Suche in Google Scholar
Trommsdorff, V., López Sánchez-Vizcaíno, V., Gómez-Pugnaire, M.T., and Müntener, O. (1998) High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain. Contributions to Mineralogy and Petrology, 132, 139–148.10.1007/s004100050412Suche in Google Scholar
Uehara, S. (1998) TEM and XRD studies of antigorite superstructure. Canadian Mineralogist, 36, 1595–1605.Suche in Google Scholar
Uehara, S., and Kamata, K. (1994) Antigorite with a large supercell from Saganoseki, Oita Prefecture, Japan. Canadian Mineralogist, 32, 93–103.Suche in Google Scholar
Uehara, S., and Shirozu, H. (1985) Variations in chemical composition and structural properties of antigorites. Mineralogical Journal, 12, 299–318.10.2465/minerj.12.299Suche in Google Scholar
Ulmer, P., and Trommsdorff, V. (1995) Serpentine stability to mantle depths and subduction- related magmatism. Science, 268, 858–861.10.1126/science.268.5212.858Suche in Google Scholar PubMed
Ulmer, P., and Trommsdorff, V. (1999) Phase relations of hydrous mantle subducting to 300 km. Mantle Petrology, 259–281.Suche in Google Scholar
Viti, C., and Mellini, M. (1996) Vein antigorites from Elba Island, Italy. European Journal of Mineralogy, 8, 423–434.10.1127/ejm/8/2/0423Suche in Google Scholar
Wassmann, S., Stöckhert, B., and Trepmann, C.A. (2011) Dissolution precipitation creep versus crystalline plasticity in high-pressure metamorphic serpentinites. Geological Society, London, Special Publications, 360(1), 129–149.10.1144/SP360.8Suche in Google Scholar
Whitney, D.L., and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.10.2138/am.2010.3371Suche in Google Scholar
Whittaker, E.J.W. (1953) The structure of chrysotile. Acta Crystallographica, 6, 747–748.10.1107/S0365110X53002118Suche in Google Scholar
Whittaker, E.J.W. (1956) The structure of chrysotile. II. Clino-chrysotile. Acta Crystallographica, 9, 855–862.10.1107/S0365110X5600245XSuche in Google Scholar
Worden, R.H., Droop, G.T.R., and Champness, E. (1991) The reaction antigorite ↔ olivine + talc + H2O in the Bergell aureole, N. Italy. Mineralogical Magazine, 55, 367–377.10.1180/minmag.1991.055.380.07Suche in Google Scholar
Wunder, B., and Schreyer, W. (1997) Antigorite: High-pressure stability in the system MgO-SiO2-H2O (MSH). Lithos, 41, 213–227.10.1016/S0024-4937(97)82013-0Suche in Google Scholar
Wunder, B., Wirth, R., and Gottschalk, M. (2001) Antigorite: Pressure and temperature dependence of polysomatism and water content. European Journal of Mineralogy, 13, 485–495.10.1127/0935-1221/2001/0013-0485Suche in Google Scholar
Zussman, J. (1954) Investigation of the crystal structure of antigorite. Mineralogical Magazine, 30, 498–512.10.1180/minmag.1954.030.227.02Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Buoyant rise of anorthosite from a layered basic complex triggered by Rayleigh-Taylor instability: Insights from a numerical modeling study
- Chemically oscillating reactions in the formation of botryoidal malachite
- Micro- and nano-size hydrogarnet clusters and proton ordering in calcium silicate garnet: Part I. The quest to understand the nature of “water” in garnet continues
- Micro- and nano-size hydrogarnet clusters in calcium silicate garnet: Part II. Mineralogical, petrological, and geochemical aspects
- Petrogenetic insights from chromite in ultramafic cumulates of the Xiarihamu intrusion, northern Tibet Plateau, China
- Enigmatic diamonds from the Tolbachik volcano, Kamchatka
- Volcanic SiO2-cristobalite: A natural product of chemical vapor deposition
- Mg diffusion in forsterite from 1250–1600 °C
- Alteration of magmatic monazite in granitoids from the Ryoke belt (SW Japan): Processes and consequences
- Smamite, Ca2Sb(OH)4[H(AsO4)2]·6H2O, a new mineral and a possible sink for Sb during weathering of fahlore
- The new K, Pb-bearing uranyl-oxide mineral kroupaite: Crystal-chemical implications for the structures of uranyl-oxide hydroxy-hydrates
- Changes in the cell parameters of antigorite close to its dehydration reaction at subduction zone conditions
- Memorial of Edward J. Olsen 1927–2020
Artikel in diesem Heft
- Buoyant rise of anorthosite from a layered basic complex triggered by Rayleigh-Taylor instability: Insights from a numerical modeling study
- Chemically oscillating reactions in the formation of botryoidal malachite
- Micro- and nano-size hydrogarnet clusters and proton ordering in calcium silicate garnet: Part I. The quest to understand the nature of “water” in garnet continues
- Micro- and nano-size hydrogarnet clusters in calcium silicate garnet: Part II. Mineralogical, petrological, and geochemical aspects
- Petrogenetic insights from chromite in ultramafic cumulates of the Xiarihamu intrusion, northern Tibet Plateau, China
- Enigmatic diamonds from the Tolbachik volcano, Kamchatka
- Volcanic SiO2-cristobalite: A natural product of chemical vapor deposition
- Mg diffusion in forsterite from 1250–1600 °C
- Alteration of magmatic monazite in granitoids from the Ryoke belt (SW Japan): Processes and consequences
- Smamite, Ca2Sb(OH)4[H(AsO4)2]·6H2O, a new mineral and a possible sink for Sb during weathering of fahlore
- The new K, Pb-bearing uranyl-oxide mineral kroupaite: Crystal-chemical implications for the structures of uranyl-oxide hydroxy-hydrates
- Changes in the cell parameters of antigorite close to its dehydration reaction at subduction zone conditions
- Memorial of Edward J. Olsen 1927–2020