Effect of lanthanum (La) substitution on the magnetic and electrical properties of nickel ferrites: an investigation of its doping concentrations
-
Anandhi Deenan Venugopal
, Selvanandan Selvaraj, Jhelai Sahadevan
, Ikhyun Kim , Parameshwari Ramalingam und Sivaprakash Paramasivam
Abstract
The structural, morphological, magnetic, and dielectric properties of lanthanum substituted nickel ferrite (NiLa x Fe2−x O4) nanoparticles have been reported in this article. The amount of lanthanum substitution in NiLa x Fe2−x O4 sample was varied from x = 0.025 to 0.125. The nanocrystalline Ni–La ferrites were synthesized using a solution combustion reaction (SCR) method. The orthorhombic crystal system of space group Pnma (62) is shown as the single-phase in all samples through structural investigation utilizing an X-ray diffraction (XRD) pattern. The observed trend indicates a positive correlation between the concentration of La and the corresponding rise in the predicted crystallite size values, which range from 60.5 nm to 65.2 nm. The nanoscale of the surface morphology has been confirmed by the utilisation of field emission scanning electron microscopy (FESEM). Energy dispersive X-ray (EDAX) mapping provides the compositional evidence for the prepared Ni–La ferrites. In addition, X-ray photoelectron spectroscopy (XPS) determines the ionic state of the individual atoms present in these samples. It reveals that there are no changes in the ionic state of the parent component atoms by substituting La. EDAX and XPS evidence the purity of prepared NiLa x Fe2−x O4 samples without any other impurity elements. By regulating the composition of dopants, this research can substantiate the superparamagnetic characteristics of ferrites. The paramagnetic nature of lanthanum atoms involves in reducing the coercivity value. The dielectric measurement on NiLa x Fe2−x O4 samples reveals that La3+ substitution effectively influence the electro-transport properties.
Funding source: National Research Foundation of Korea (NRF) grant.
Award Identifier / Grant number: 2022R1C1C1006414
Acknowledgments
The research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (No. 2022R1C1C1006414).
-
Research ethics: Not applicable.
-
Author contributions: D.V.A.: Formal Analysis, Data Curation, Conceptualization and Writing-Original Draft; S.S.: Conceptualization, Data Curation, Formal Analysis, Supervision, Writing-Review and Editing and Proof Reading; J.S.: Formal Analysis, Data Curation, Conceptualization and Writing-Review and Editing; I.K.: Data Curation, Supervision, Writing-Review and Editing, and Project administration; P.S.: Formal Analysis, Data Curation, Conceptualization, Validation, Writing-Review and Editing. All authors have read and agreed to the published version of the manuscript.
-
Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
-
Research funding: The research fund was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (No. 2022R1C1C1006414).
-
Data availability: All the data used in the manuscript are within the manuscript.
References
1. Manikandan, V., Mirzaei, A., Vigneselvan, S., Kavita, S., Sakharam Mane, R., Kim, S. S., Chandrasekaran, J. ACS Omega 2019, 4, 12919–12926. https://doi.org/10.1021/acsomega.9b01562.Suche in Google Scholar PubMed PubMed Central
2. Satalkar, M., Kane, S. N. J. Phys.: Conf. Ser. 2016, 755, 012047. https://doi.org/10.1088/1742-6596/755/1/012050.Suche in Google Scholar
3. Pilania, G., Kocevski, V., Valdez, J. A., Kreller, C. R., Uberuaga, B. P. Commun. Mater. 2020, 1, 84. https://doi.org/10.1038/s43246-020-00082-2.Suche in Google Scholar
4. Jacob, B. P., Thankachan, S., Xavier, S., Mohammed, E. M. Phys. Scr. 2011, 84, 045702. https://doi.org/10.1088/0031-8949/84/04/045702.Suche in Google Scholar
5. Ahlawat, A., Sathe, V. G., Reddy, V. R., Gupta, A. J. Magn. Magn. Mater. 2011, 323, 2049–2054. https://doi.org/10.1016/j.jmmm.2011.03.01.Suche in Google Scholar
6. Moradmard, H., FarjamiShayesteh, S., Tohidi, P., Abbas, Z. M. Khaleghi. 2015, 650, 116–122. https://doi.org/10.1016/j.jallcom.2015.07.269.Suche in Google Scholar
7. Pubby, K., Vijay Babu, K., Narang, S. B. Mater. Sci. Eng. B 2020, 255, 114513. https://doi.org/10.1016/j.mseb.2020.114513.Suche in Google Scholar
8. Balavijayalakshmi, J., Suriyanarayanan, N., Jayaprakash, R. J. Magn. Magn. Mater. 2015, 385, 302–307. https://doi.org/10.1016/j.jmmm.2015.03.036.Suche in Google Scholar
9. Chavarría-Rubio, J. A., Cortés-Hernández, D. A., Garay-Tapia, A. M., Francisco, H.-López G. J. Magn. Magn. Mater. 2022, 553, 169253. https://doi.org/10.1016/j.jmmm.2022.169253.Suche in Google Scholar
10. Hochschild, R., Fuess, H. J. Mater. Chem. 2000, 10, 539–542. https://doi.org/10.1039/A905583E.Suche in Google Scholar
11. Thakur, S., Katyal, S. C., Singh, M. Appl. Phys. Lett. 2007, 9, 262501. https://doi.org/10.1063/1.2824454.Suche in Google Scholar
12. Cheng, Y., Zheng, Y., Wang, Y., Bao, F., Qin, Y. Solid State Chem. 2005, 178, 2394–2397. https://doi.org/10.1016/j.jssc.2005.05.006.Suche in Google Scholar
13. Sepelak, V., Baabe, D., Mienert, D., Litterst, F. J. F., Becker, K. D. J. Magn. Magn. Mater. 2003, 257, 377–386. https://doi.org/10.1016/S0304-8853(02)01279-9.Suche in Google Scholar
14. Varma, A., Mukasyan, A. S., Rogachev, A. S., Manukyan, K. V. Chem. Rev. 2016, 116, 14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279.Suche in Google Scholar PubMed
15. Ni, Q., Sun, L., Cao, E., Hao, W., Zhang, Y., Ju, L. Ceram. Int. 2020, 46, 9722–9728. https://doi.org/10.1016/j.ceramint.2019.12.240.Suche in Google Scholar
16. Rahman, A., Rafiq, M. A., Karim, S., Maaz, K., Siddique, M., Hasan, M. M. Phys. B: Condens. Matter 2011, 406, 4393–4399. https://doi.org/10.1016/j.physb.2011.08.094.Suche in Google Scholar
17. Tahar, L. B., Smiri, L. S., Artus, M., Joudrier, A. L., Herbst, F., Vaulay, M., Ammar, S., Fiévet, F. Mater. Res. Bull. 2007, 42, 1888–1896. https://doi.org/10.1016/j.materresbull.2006.12.014.Suche in Google Scholar
18. Yao, H., Ning, X., Zhao, H., Hao, A., Ismail, M. ACS Omega 2021, 6, 6305–6311. https://doi.org/10.1021/acsomega.0c06097.Suche in Google Scholar PubMed PubMed Central
19. Jaffari, G. H., Rumaiz, A. K., Woicik, J. C., Shah, S. I. J. Appl. Phys. 2012, 111, 093906. https://doi.org/10.1063/1.4704690.Suche in Google Scholar
20. Yan, Z., Gao, J., Li, Y., Zhang, M., Guo, M. RSC Adv. 2015, 5, 92778–92787. https://doi.org/10.1039/C5RA17145H.Suche in Google Scholar
21. Sonia, M. M. L., Blessim, S., Pauline, S. Int. J. Res. 2014, 1, 1051–1054.Suche in Google Scholar
22. Gu, Z., Xiang, X., Fan, G., Li, F. J. Phys. Chem. C 2008, 112, 18459; https://doi.org/10.1021/jp806682q.Suche in Google Scholar
23. Vadivel, M., Ramesh Babu, R., Sethuraman, K., Ramamurthi, K., Arivanandhan, M. J. Magn. Magn. Mater. 2014, 362, 122–129. https://doi.org/10.1016/j.jmmm.2014.03.016.Suche in Google Scholar
24. Murugesan, C., Chandrasekaran, G. RSC Adv. 2015, 5, 73714–73725. https://doi.org/10.1039/C5RA14351A.Suche in Google Scholar
25. Dirkes, H., Heumann, Th. J. Less-Common Met. 1982, 83, L11–L15. https://doi.org/10.1016/0022-5088(82)90179-5.Suche in Google Scholar
26. Murugesan, C., Uganda, K., Okrasa, L., Shen, J., Chandrasekaran, G. Ceram. Int. 2021, 47, 1672–1685. https://doi.org/10.1016/j.ceramint.2020.08.284.Suche in Google Scholar PubMed PubMed Central
27. Jahan, N., M. Khan, N. I., Khandaker, J. I. ACS Omega 2021, 6, 32852–32862. https://doi.org/10.1021/acsomega.1c04832.Suche in Google Scholar PubMed PubMed Central
28. Sivaprakash, P., Nitthin Ananth, A., Nagarajan, V., Parameshwari, R., Arumugam, S., Jose, S. P., Esakki Muthu, S. Mater. Chem. Phys. 2020, 248, 122922. https://doi.org/10.1016/j.matchemphys.2020.122922.Suche in Google Scholar
29. Sivaprakash, P., Divya, S., Parameshwari, R., Saravanan, C., Sagadevan, S., Arumugam, S., Esakki Muthu, S. J. Mater. Sci.: Mater. Electron. 2020, 31, 16369–16378; https://doi.org/10.1007/s10854-020-04187-9.Suche in Google Scholar
30. Ramana, C. V., Mauger, A., Gendron, F., Julien, C. M., Zaghib, K. J. Power Sources 2009, 187, 555–564. https://doi.org/10.1016/j.jpowsour.2008.11.042.Suche in Google Scholar
31. Divya, S., Sivaprakash, P., Raja, S., Esakki Muthu, S., Kim, I., Renuka, N., Arumugam, S., Oh, T. H. Ceram. Int. 2022, 48, 33208–33218; https://doi.org/10.1016/j.ceramint.2022.07.263.Suche in Google Scholar
32. Divya, S., Sivaprakash, P., Raja, S., Esakki Muthu, S., EmadEed, M., Arumugam, S., Oh, T. H. Appl. Nanosci. 2023, 13, 1327–1336; https://doi.org/10.1007/s13204-021-02026-9.Suche in Google Scholar
33. Arumugam, S., Sivaprakash, P., Dixit, A., Chaurasiya, R., Govindaraj, L., Sathiskumar, M., Chatterjee, S., Suryanarayanan, R. Sci. Rep. 2019, 9, 3200; https://doi.org/10.1038/s41598-019-39083-8.Suche in Google Scholar PubMed PubMed Central
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for Solar Water Splitting”
- Unveiling the role of rare earth dopant in metal molybdate nanocomposites via facile microwave-combustion strategy and their effect on antibacterial activity
- Effect of lanthanum (La) substitution on the magnetic and electrical properties of nickel ferrites: an investigation of its doping concentrations
- The relationship between environmental factors and dust accumulation by machine learning
- Facile formation of STO/gC3N4 hybrid composite to effectively degrade the dye and antibiotic under white light
- Investigation of the composition and morphology of raw materials from the Aral Sea region
- Chemical state and atomic structure in stoichiovariants photochromic oxidized yttrium hydride thin films
- Single crystal of barium bis para-nitrophenolate para-nitrophenol tetrahydrate for NLO applications: crystal growth and DFT analysis
- Characterization of single-crystal phenothiazine synthesized using the vertical Bridgman method
- Amidoxime functionalized mesoporous silica nanoparticles for pH-responsive delivery of anticancer drug
- Exploring optical and electrochemical studies on thulium selenite (TmSeO3)
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for Solar Water Splitting”
- Unveiling the role of rare earth dopant in metal molybdate nanocomposites via facile microwave-combustion strategy and their effect on antibacterial activity
- Effect of lanthanum (La) substitution on the magnetic and electrical properties of nickel ferrites: an investigation of its doping concentrations
- The relationship between environmental factors and dust accumulation by machine learning
- Facile formation of STO/gC3N4 hybrid composite to effectively degrade the dye and antibiotic under white light
- Investigation of the composition and morphology of raw materials from the Aral Sea region
- Chemical state and atomic structure in stoichiovariants photochromic oxidized yttrium hydride thin films
- Single crystal of barium bis para-nitrophenolate para-nitrophenol tetrahydrate for NLO applications: crystal growth and DFT analysis
- Characterization of single-crystal phenothiazine synthesized using the vertical Bridgman method
- Amidoxime functionalized mesoporous silica nanoparticles for pH-responsive delivery of anticancer drug
- Exploring optical and electrochemical studies on thulium selenite (TmSeO3)