Home Physical Sciences Unveiling the role of rare earth dopant in metal molybdate nanocomposites via facile microwave-combustion strategy and their effect on antibacterial activity
Article
Licensed
Unlicensed Requires Authentication

Unveiling the role of rare earth dopant in metal molybdate nanocomposites via facile microwave-combustion strategy and their effect on antibacterial activity

  • Abdul Samad Shameem EMAIL logo , Mohan Uma Priya , Vadivel Siva , Anbazhagan Murugan , Krishnasamy Padmavathi and Abdullah G. Al-Sehemi
Published/Copyright: February 29, 2024

Abstract

Developing a robust material holding antimicrobial assets has been an efficient strategy for reducing the risk of infections related to healthcare, significantly with medical devices and touch surfaces. Molybdenum-based compounds have drawn momentous attraction because of their unique characteristics. A series of undoped and 5 % rare earth (Ce & La) doped metal (Ni, Co & Bi) molybdate nanocomposites have been prepared by facile microwave combustion method and characterized. The present study investigates the effect of dopants on crystal structure and morphology, and their impact on anti-bacterial properties is noticed. The UV–Vis. absorption spectra of all samples show a broad absorption band between 280 and 430 nm. The antibacterial properties of the prepared nanocomposites have been examined by the agar diffusion method against three Gram-positive and two Gram-negative bacteria, showing good bactericidal efficiency for all samples, except 5 % Ce–NiMoO4 (antibacterial activity exclusively against Gram-positive bacteria) and 5 % La–NiMoO4 (no antibacterial activity) nanocomposites. This work provided a novel pathway in the biomaterial field.


Corresponding author: Abdul Samad Shameem, Department of Science and Humanities, Karpagam Academy of Higher Education, Coimbatore 641 021, India; and Centre for Energy and Environment, Karpagam Academy of Higher Education, Coimbatore 641 021, India, E-mail:

Acknowledgment

The Deanship of Scientific Research at King Khalid University is greatly appreciated for funding (R.G.P-1/284/44).

  1. Ethical approval: Not applicable.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: Authors state no conflict of interest.

  4. Informed consent: Informed consent was obtained from all individuals included in this study.

  5. Research funding: None declared.

References

1. Haque, M., Sartelli, M., McKimm, J., Abu Bakar, M. Infect. Drug Resist. 2018, 11, 2321. https://doi.org/10.2147/IDR.S177247.Search in Google Scholar PubMed PubMed Central

2. Cutter, I. S., Viets, H. R. A Short History of Midwifery; W. B. Saunders Company: Philadelphia, London, 1964; p. 99.Search in Google Scholar

3. Dancer, S. J. J. Hosp. Infect. 2004, 56, 10. https://doi.org/10.1016/j.jhin.2003.09.017.Search in Google Scholar PubMed PubMed Central

4. Guhan, V., Sanjana, S., Gowri, S., Karthikeyan, C., Faiyazuddin, M., Abdurahman Hirad, H., Alarfaj, A. A., Sharmila, S. Biomass Convers. Biorefin. 2023; https://doi.org/10.1007/s13399-023-04574-2.Search in Google Scholar

5. Mobeen Amanulla, A., Sundaram, R., Kaviyarasu, K. Surface. Interfac. 2019, 16, 132. https://doi.org/10.1016/j.surfin.2019.06.001.Search in Google Scholar

6. Rahman, G., Khan, M., Khan, Z., Shah, A. U. H. A., Khan, M. S., Shah, L. A. Z. Phys. Chem. 2019, 233, 1261. https://doi.org/10.1515/zpch-2018-1303.Search in Google Scholar

7. Ghamipoor, S., Fayyazi, S., Bahadorikhalili, S. Z. Phys. Chem. 2020, 234, 531. https://doi.org/10.1515/zpch-2018-1288.Search in Google Scholar

8. Nazir, A., Raza, M., Abbas, M., Abbas, S., Ali, A., Ali, Z., Younas, U., Al-Mijalli, S. H., Iqbal, M. Z. Phys. Chem. 2022, 236, 1203. https://doi.org/10.1515/zpch-2022-0024.Search in Google Scholar

9. Majid, F., Bashir, M., Bibi, I., Ayub, M., Khan, B. S., Somaily, H. H., Al-Mijalli, S. H., Nazir, A., Iqbal, S., Iqbal, M. Z. Phys. Chem. 2023, 237, 1345. https://doi.org/10.1515/zpch-2022-0097.Search in Google Scholar

10. Xia, Z., Min, J., Zhou, S., Ma, H., Zhang, B., Tang, X. Ceram. Int. 2021, 47, 12667. https://doi.org/10.1016/j.ceramint.2021.01.127.Search in Google Scholar

11. Shafaei, S., Dorrstein, J., Guggenbichler, J. P., Zollfrank, C. Lett. Appl. Microbiol. 2017, 64, 43. https://doi.org/10.1111/lam.12670.Search in Google Scholar PubMed

12. Wang, X., Li, Q., Miao, Y., Chen, X., Zhang, X., Shi, J., Liu, F., Wang, X., Li, Z., Yang, Y., Zhang, X., Wang, J., Duan, J. ACS Nano 2023, 17, 15568. https://doi.org/10.1021/acsnano.3c02304.Search in Google Scholar PubMed

13. Mohammadi, A., Mirzaei, A., Javanshir, S. RSC Adv. 2022, 12, 16215. https://doi.org/10.1039/D2RA01640K.Search in Google Scholar PubMed PubMed Central

14. Liao, J., Wang, L., Ding, S., Tian, G., Hu, H., Wang, Q., Yin, W. Nano Today 2023, 50, 101875. https://doi.org/10.1016/j.nantod.2023.101875.Search in Google Scholar

15. Tetault, N., Gbaguidi-Haore, H., Bertrand, X., Quentin, R., van der Mee-Marquet, N. Antimicrob. Resist. Infect. Control 2012, 1, 1. https://doi.org/10.1186/2047-2994-1-35.Search in Google Scholar PubMed PubMed Central

16. Mardare, C. C., Hassel, A. W. ACS Comb. Sci. 2014, 16, 631. https://doi.org/10.1021/co5000536.Search in Google Scholar PubMed

17. Shujah, T., Shahzadi, A., Haider, A., Mustajab, M., Haider, A. M., Hamid, A., Haider, J., Nabgan, W., Ikram, M. RSC Adv. 2022, 12, 35177. https://doi.org/10.1039/D2RA07238F.Search in Google Scholar

18. Tanasic, D., Rathner, A., Kollender, J. P., Rathner, P., Müller, N., Zelenka, K. C., Hassel, A. W., Mardare, C. C. Biointerphases 2017, 12, 05G607. https://doi.org/10.1116/1.4996434.Search in Google Scholar PubMed

19. Davies, J., Davies, D. Microbiol. Mol. Biol. Rev. 2010, 74, 417. https://doi.org/10.1128/mmbr.00016-10.Search in Google Scholar

20. Shameem, A., Devendran, P., Murugan, A., Siva, V., Ramadoss, G., Hussain, S., Asath Bahadur, S. Sustain. Mater. Technol. 2023, 37, e00661. https://doi.org/10.1016/j.susmat.2023.e00661.Search in Google Scholar

21. Shameem, A., Devendran, P., Murugan, A., Siva, V., Asath Bahadur, S. J. Phys. Chem. Solids 2023, 179, 111392. https://doi.org/10.1016/j.jpcs.2023.111392.Search in Google Scholar

22. Shameem, A., Devendran, P., Murugan, A., Siva, V., Asath Bahadur, S. J. Energy Storage 2023, 73, 108856. https://doi.org/10.1016/j.est.2023.108856.Search in Google Scholar

23. Shameem, A., Devendran, P., Murugan, A., Siva, V., Seevakan, K., Hussain, S., Sivaganesh, D., Asath Bahadur, S. J. Alloys Compd. 2023, 968, 171825. https://doi.org/10.1016/j.jallcom.2023.171825.Search in Google Scholar

24. Shameem, A., Devendran, P., Siva, V., Murugan, A., Sasikumar, S., Nallamuthu, N., Hussain, S., Asath Bahadur, S. Solid State Sci. 2020, 106, 106303. https://doi.org/10.1016/j.solidstatesciences.2020.106303.Search in Google Scholar

25. Shameem, A., Devendran, P., Siva, V., Packiaraj, R., Nallamuthu, N., Asath Bahadur, S. J. Mater. Sci. Mater. Electron. 2019, 30, 3305. https://doi.org/10.1007/s10854-018-00603-3.Search in Google Scholar

26. Mobeen, A., Maria Magdalane, C., Jasmine Shahina, S. K., Lakshmi, D., Sundaram, R., Ramalingam, G., Raja, A., Madhavan, J., Letsholathebe, D., Bashir, A. K. H., Maaza, M., Kaviyarasu, K. Surface. Interfac. 2019, 17, 100381. https://doi.org/10.1016/j.surfin.2019.100381.Search in Google Scholar

27. Rajagopal, G., Manivannan, N., Sundararajan, M., Kumar, A. G., Samuthirarajan, S., Mathivanan, N., Ilango, S. Nano Express 2021, 1, 010010. https://doi.org/10.1088/2632-959X/abd965.Search in Google Scholar

28. Chitra Devi, A., Siva, V., Thangarasu, S., Athimoolam, S., Asath Bahadur, S. J. Mol. Struct. 2021, 1245, 131033. https://doi.org/10.1016/j.molstruc.2021.131033.Search in Google Scholar

29. Oliveira, C. A., Volanti, D. P., Nogueira, A. E., Zamperini, C. A., Vergani, C. E., Longo, E. Mater. Des. 2017, 115, 73. https://doi.org/10.1016/j.matdes.2016.11.032.Search in Google Scholar

30. Zhao, H., Xia, J., Yin, D., Luo, M., Yan, C., Du, Y. Coord. Chem. Rev. 2019, 390, 32. https://doi.org/10.1016/j.ccr.2019.03.011.Search in Google Scholar

31. Man, Y., Zong, R., Zhu, Y. Acta Phys. Sin. 2007, 23, 1671. https://doi.org/10.1016/S1872-1508(07)60080-1.Search in Google Scholar

32. Sharma, P., Minakshi Sundaram, M., Singh, D., Ahuja, R. ACS Appl. Energy Mater. 2020, 3, 12385. https://doi.org/10.1021/acsaem.0c02380.Search in Google Scholar

33. Zăvoianu, R., Pavel, O. D., Cruceanu, A., Preda, C., Niţu, C. S., Angelescu, E. Prog. Catal. 2003, 12, 83.Search in Google Scholar

34. Wu, X., Ng, Y. H., Wen, X., Chung, H. Y., Wong, R. J., Du, Y., Dou, S. X., Amal, R., Scott, J. J. Chem. Eng. 2018, 353, 636. https://doi.org/10.1016/j.cej.2018.07.149.Search in Google Scholar

35. Yang, L., Wang, J., Wan, Y., Li, Y., Xie, H., Cheng, H., Seo, H. J. J. Alloys Compd. 2016, 664, 756. https://doi.org/10.1016/j.jallcom.2015.10.037.Search in Google Scholar

36. Soni, S., Chouhan, N., Meena, R. K., Kumar, S., Dalela, B., Mishra, M., Meena, R. S., Gupta, G., Kumar, S., Alvi, P. A., Dalela, S. Global Chall. 2019, 3, 1800090. https://doi.org/10.1002/gch2.201800090.Search in Google Scholar PubMed PubMed Central

37. Ray, S. K., Dhakal, D., Sohng, J. K., Kim, S.-Y., Lee, S. W. J. Chem. Eng. 2018, 347, 366. https://doi.org/10.1016/j.cej.2018.04.122.Search in Google Scholar

38. Singh, B. P., Parchur, A. K., Ningthoujam, R. S., Ansari, A. A., Singh, P., Rai, S. B. Dalton Trans. 2014, 43, 4779. https://doi.org/10.1039/C3DT53408A.Search in Google Scholar PubMed

39. Khajuria, S., Sanotra, S., Ladol, J., Sheikh, H. N. J. Mater. Sci. Mater. Electron. 2015, 26, 7073. https://doi.org/10.1007/s10854-015-3328-1.Search in Google Scholar

40. Song, H., Ko, K., Oh, I., Lee, B. Eur. Cell. Mater. 2006, 11(Suppl. 1), 58.Search in Google Scholar

41. Cui, J., Liang, Y., Yang, D., Liu, Y. Sci. Rep. 2016, 6, 21423. https://doi.org/10.1038/srep21423.Search in Google Scholar PubMed PubMed Central

42. Matsumoto, T., Sunada, K., Nagai, T., Isobe, T., Matsushita, S., Ishiguro, H., Nakajima, A. Mater. Sci. Eng. C 2020, 117, 111323. https://doi.org/10.1016/j.msec.2020.111323.Search in Google Scholar PubMed PubMed Central

43. Panáček, A., Kvitek, L., Prucek, R., Kolář, M., Večeřová, R., Pizúrová, N., Sharma, V. K., Nevěčná, T., Zbořil, R. J. Phys. Chem. B 2006, 110, 16248. https://doi.org/10.1021/jp063826h.Search in Google Scholar PubMed

Received: 2023-10-28
Accepted: 2024-01-10
Published Online: 2024-02-29
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0403/html
Scroll to top button