Abstract
A novel organic-inorganic photocatalyst like layer structured graphitic carbon nitride (g-C3N4 or CN) hybrid with strontium titanate (SrTiO3 or STO) was prepared by a precipitation-sonication technique for photocatalytic activity. The crystal phases, morphologies, elemental composition, optical properties, and porous structure of the prepared pristine and STO/CN hybrid composite were measured using various physicochemical characterizations. It is indicated that STO nanospheres were effectively loaded on the g-C3N4 nanosheets, resulting in the STO/CN hybrid composite, high surface area, enhanced visible-light absorption, enhancing photoinduced charge separation and suppressing the recombination rate. Furthermore, the 3 wt% of g-C3N4 composited STO (STO/CN-3) catalyst demonstrated higher photocatalytic activity than pristine STO in 100 min under white light irradiation, reaching the degradation efficiency of 92.66 % and 93.31 % toward methylene blue (MB) and tetracycline (TC), respectively. The improved photocatalytic activity of STO/gCN hybrid composite could be ascribed to the synergistic effect between STO and CN with strong interfacial interaction facilitating efficient charge separation and inhibiting the charge recombination of photogenerated electron-hole pairs. Moreover, a possible photocatalytic mechanism has been proposed for the degradation of MB and TC. Besides, the excellent photocatalytic performance, STO/CN-3 nanocomposite also exhibits outstanding photostability under the current factors, suggesting that they are suitable for practical applications.
Acknowledgements
The author K. Aravinthkumar thank the Joint Council of Scientific & Industrial Research (CSIR) – University Grants Commission (UGC), Government of India for the financial support in the form of fellowship for this work through the NET-SRF Award (NTA Ref. No.: 201610274875 dated 01.04.2021). C.Raja Mohan Thanks Prof.G.Muralidharan for useful discussions.
-
Research ethics: Not applicable.
-
Author contributions: K. Aravinthkumar: Conceptualization, Methodology, Investigation, Formal analysis, Writing – Original Draft. S. Karazhanov: Formal analysis, Software and Review. C. Raja Mohan: Conceptualization, Validation, Visualization, Writing – Review & Editing, Supervision.
-
Competing interests: The authors declare that they have no conflict of interest to the publication of this article.
-
Research funding: None declared.
-
Data availability: Data will be made available on request.
References
1. Gangu, K. K., Maddila, S., Jonnalagadda, S. B. Sci. Total Environ. 2019, 646, 1398–1412; https://doi.org/10.1016/j.scitotenv.2018.07.375.Search in Google Scholar PubMed
2. Rahman, Q. I., Ahmad, M., Misra, S. K., Lohani, M. Mater. Lett. 2013, 91, 170–174; https://doi.org/10.1016/j.matlet.2012.09.044.Search in Google Scholar
3. Zhang, G., Wu, H., Chen, D., Li, N., Xu, Q., Li, H., He, J., Lu, J. Green Energy Environ. 2022, 7, 176–204; https://doi.org/10.1016/j.gee.2020.12.015.Search in Google Scholar
4. Jabbar, Z. H., Graimed, B. H. J. Water Process Eng. 2022, 47, 102671; https://doi.org/10.1016/j.jwpe.2022.102671.Search in Google Scholar
5. Kiss, B., Manning, T. D., Hesp, D., Didier, C., Taylor, A., Pickup, D. M., Chadwick, A. V., Allison, H. E., Dhanak, V. R., Claridge, J. B., Darwent, J. R., Rosseinsky, M. J. Appl. Catal., B 2017, 206, 547–555; https://doi.org/10.1016/j.apcatb.2017.01.066.Search in Google Scholar
6. Jabbar, Z. H., Graimed, B. H., Issa, M. A., Ammar, S. H., Ebrahim, S. E., Khadim, H. J., Okab, A. A. Mater. Sci. Semicond. Process. 2023, 153, 107151; https://doi.org/10.1016/j.mssp.2022.107151.Search in Google Scholar
7. Issa, M. A., Zentou, H., Jabbar, Z. H., Abidin, Z. Z., Harun, H., Halim, N. A. A., Alkhabet, M. M., Pudza, M. Y. Environ. Sci. Pollut. Res. 2022, 29, 86859–86872; https://doi.org/10.1007/s11356-022-21844-0.Search in Google Scholar PubMed PubMed Central
8. Li, Y., Dong, H., Li, L., Tang, L., Tian, R., Li, R., Chen, J., Xie, Q., Jin, Z., Xiao, J., Xiao, S., Zeng, G. Water Res. 2021, 192, 116850; https://doi.org/10.1016/j.watres.2021.116850.Search in Google Scholar PubMed
9. Huang, C. P., Dong, C., Tang, Z. Waste Manag. 1993, 13, 361–377; https://doi.org/10.1016/0956-053x(93)90070-d.Search in Google Scholar
10. Deng, Y., Zhao, R. Curr. Pollut. Rep. 2015, 1, 167–176; https://doi.org/10.1007/s40726-015-0015-z.Search in Google Scholar
11. Ince, N. H., Apikyan, I. G. Water Res. 2000, 34, 4169–4176; https://doi.org/10.1016/s0043-1354(00)00194-9.Search in Google Scholar
12. Zhang, B., Wang, D., Cao, J., Zhao, C., Pan, J., Liu, D., Liu, S., Zeng, Z., Chen, T., Liu, G., Jiao, S., Xu, Z., Huang, Y., Zhao, L., Wang, J. ACS Appl. Mater. Interfaces 2023, 15, 12924–12935; https://doi.org/10.1021/acsami.2c19209.Search in Google Scholar PubMed
13. Yang, Z., Lin, Q., Zeng, G., Zhao, S., Yan, G., Ang, M. B. M. Y., Chiao, Y. H., Pu, S. J. Memb. Sci. 2023, 669, 121329; https://doi.org/10.1016/j.memsci.2022.121329.Search in Google Scholar
14. Velmurugan, G., Ganapathi Raman, R., Sivaprakash, P., Viji, A., Cho, S. H., Kim, I. Nanomaterials 2023, 13, 2494; https://doi.org/10.3390/nano13172494.Search in Google Scholar PubMed PubMed Central
15. Kareem, M. A., Bello, I. T., Shittu, H. A., Sivaprakash, P., Adedokun, O., Arumugam, S. Clean. Mater. 2022, 3, 100041; https://doi.org/10.1016/j.clema.2022.100041.Search in Google Scholar
16. Maqsood, J., Fallatah, A. M., Zaki, Z. I., Akhtar, M., Irshad, A. Z. Phys. Chem. 2023, 237, 1505–1523; https://doi.org/10.1515/zpch-2023-0272.Search in Google Scholar
17. Gayathri, V., Muthukumar, A., Raja Mohan, C. Colloids Surf., A 2024, 683, 132973; https://doi.org/10.1016/j.colsurfa.2023.132973.Search in Google Scholar
18. Immanuel, P., Raja Mohan, C. Mater. Focus 2016, 5, 362–367; https://doi.org/10.1166/mat.2016.1363.Search in Google Scholar
19. Paulraj, S., Raman, K., Mohan, C. R., Janarthanan, R., Ashokkumar, K., Ulagan, M. P. J. Agric. Food Res. 2022, 9, 100343; https://doi.org/10.1016/j.jafr.2022.100343.Search in Google Scholar
20. Suganya, P., Rajamohan, C., Mahalingam, P. U. Mater. Res. Express 2018, 6, 025409; https://doi.org/10.1088/2053-1591/aaf0c2.Search in Google Scholar
21. Yue, X., Zhang, J., Yan, F., Wang, X., Huang, F. Appl. Surf. Sci. 2014, 319, 68–74; https://doi.org/10.1016/j.apsusc.2014.07.100.Search in Google Scholar
22. Reihl, B., Bednorz, J. G., Müller, K. A., Jugnet, Y., Landgren, G., Morar, J. F. Properties of Perovskites and other Oxides, Vol. 30; World Scientific: Singapore, 2010; pp. 507–510.Search in Google Scholar
23. García-López, E., Marcì, G., Megna, B., Parisi, F., Armelao, L., Trovarelli, A., Boaro, M., Palmisano, L. J. Catal. 2015, 321, 13–22; https://doi.org/10.1016/j.jcat.2014.10.014.Search in Google Scholar
24. Aravinthkumar, K., Peter, I. J., Babu, G. A., Navaneethan, M., Karazhanov, S., Raja Mohan, C. Mater. Lett. 2022, 319, 132284; https://doi.org/10.1016/j.matlet.2022.132284.Search in Google Scholar
25. Aravinthkumar, K., Anandha babu, G., Raja Mohan, C. Colloids Surf., A 2023, 672, 131702; https://doi.org/10.1016/j.colsurfa.2023.131702.Search in Google Scholar
26. Liu, J., Zhang, L., Li, N., Tian, Q., Zhou, J., Sun, Y. J. Mater. Chem. A 2015, 3, 706–712; https://doi.org/10.1039/c4ta04984e.Search in Google Scholar
27. Immanuel, P., Mahendiran, D., Ramachandran, K., Jacquiline Regina Mary, A., Raja Mohan, C. Mater. Today Proc. 2022, 68, 523–533; https://doi.org/10.1016/j.matpr.2022.08.018.Search in Google Scholar
28. Patnaik, S., Martha, S., Acharya, S., Parida, K. M. Inorg. Chem. Front. 2016, 3, 336–347; https://doi.org/10.1039/c5qi00255a.Search in Google Scholar
29. Wen, J., Xie, J., Chen, X., Li, X. Appl. Surf. Sci. 2017, 391, 72–123; https://doi.org/10.1016/j.apsusc.2016.07.030.Search in Google Scholar
30. Liu, Y., Su, F. Y., Yu, Y. X., De Zhang, W. Int. J. Hydrogen Energy 2016, 41, 7270–7279; https://doi.org/10.1016/j.ijhydene.2016.03.113.Search in Google Scholar
31. Ahmaruzzaman, M., Mishra, S. R. Mater. Res. Bull. 2021, 143, 111417; https://doi.org/10.1016/j.materresbull.2021.111417.Search in Google Scholar
32. Xu, Y., Li, W., Xu, T., Wang, G., Huan, W., Si, C. Adv. Compos. Hybrid Mater. 2023, 6, 1–13.10.1007/s42114-023-00779-1Search in Google Scholar
33. Gayathri, V., John Peter, I., Ramachandran, K., Karazhanov, S., Raja Mohan, C. Energy Fuels 2021, 35, 13360–13369; https://doi.org/10.1021/acs.energyfuels.1c01471.Search in Google Scholar
34. Gayathri, V., Peter, I. J., Raja Mohan, C. ECS J. Solid State Sci. Technol. 2021, 10, 091002; https://doi.org/10.1149/2162-8777/ac2218.Search in Google Scholar
35. Gayathri, V., Praveen, E., Jayakumar, K., Karazhanov, S., Raja Mohan, C. Colloids Surf., A 2023, 662, 130948; https://doi.org/10.1016/j.colsurfa.2023.130948.Search in Google Scholar
36. Krishnan, S. V., Palanivelu, S., Ambalam, M. M. M., Venkatesan, R., Arivalagan, M., Pearce, J. M., Mayandi, J. Z. Phys. Chem. 2018, 232, 1827–1842; https://doi.org/10.1515/zpch-2017-1075.Search in Google Scholar
37. Parveen, S., Alzahrani, F. M. A., Al Huwayz, M., Adan, W., Alrowaili, Z. A., Noor-ul-Ain, Chaudhary, K., Al-Buriahi, M. S. Z. Phys. Chem. 2023, 237, 1691–1711; https://doi.org/10.1515/zpch-2023-0267.Search in Google Scholar
38. Tran, H. H., Truong, D. H., Truong, T. T., Xuan Dieu Nguyen, T., Jin, Y. S., Kim, S. J., Vo, V. Bull. Korean Chem. Soc. 2018, 39, 965–971; https://doi.org/10.1002/bkcs.11536.Search in Google Scholar
39. Li, Y., Wang, X., Wang, X., Xia, Y., Zhang, A., Shi, J., Gao, L., Wei, H., Chen, W. Colloids Surf., A 2021, 618, 126445; https://doi.org/10.1016/j.colsurfa.2021.126445.Search in Google Scholar
40. Kappadan, S., Thomas, S., Kalarikkal, N. Chem. Phys. Lett. 2021, 771, 138513; https://doi.org/10.1016/j.cplett.2021.138513.Search in Google Scholar
41. Neena, N., Humayun, M., Bhattacharyya, D., Fu, D. J. J. Photochem. Photobiol., A 2020, 396, 112515.10.1016/j.jphotochem.2020.112515Search in Google Scholar
42. Cai, W., Tang, J., Shi, Y., Wang, H., Jiang, X. ACS Omega 2019, 4, 22187–22196; https://doi.org/10.1021/acsomega.9b03471.Search in Google Scholar PubMed PubMed Central
43. Aravinthkumar, K., Praveen, E., Jacquline Regina Mary, A., Raja Mohan, C. Inorg. Chem. Commun. 2022, 140, 109451; https://doi.org/10.1016/j.inoche.2022.109451.Search in Google Scholar
44. Wei, H., Cai, J., Zhang, Y., Zhang, X., Baranova, E. A., Cui, J., Wang, Y., Shu, X., Qin, Y., Liu, J., Wu, Y. RSC Adv. 2020, 10, 42619–42627; https://doi.org/10.1039/d0ra08246e.Search in Google Scholar PubMed PubMed Central
45. Shen, J., Yang, H., Shen, Q., Feng, Y., Cai, Q. CrystEngComm 2014, 16, 1868–1872.10.1039/C3CE42513DSearch in Google Scholar
46. Xian, T., Yang, H., Di, L. J., Dai, J. F. J. Alloys Compd. 2015, 622, 1098–1104; https://doi.org/10.1016/j.jallcom.2014.11.051.Search in Google Scholar
47. Pareek, S., Sharma, M., Lal, S., Quamara, J. K. J. Mater. Sci. Mater. Electron. 2018, 29, 13043–13051; https://doi.org/10.1007/s10854-018-9426-0.Search in Google Scholar
48. Konstas, P. S., Konstantinou, I., Petrakis, D., Albanis, T. Catalysts 2018, 8, 554; https://doi.org/10.3390/catal8110554.Search in Google Scholar
49. Bashiri, R., Mohamed, N. M., Suhaimi, N. A., Shahid, M. U., Kait, C. F., Sufian, S., Khatani, M., Mumtaz, A. Diam. Relat. Mater. 2018, 85, 5–12; https://doi.org/10.1016/j.diamond.2018.03.019.Search in Google Scholar
50. Shaheen, M., Bhatti, I. A., Ashar, A., Mohsin, M., Nisar, J., Almoneef, M. M., Iqbal, M. Z. Phys. Chem. 2021, 235, 1395–1412; https://doi.org/10.1515/zpch-2020-1741.Search in Google Scholar
51. Chen, X., Tan, P., Zhou, B., Dong, H., Pan, J., Xiong, X. J. Alloys Compd. 2015, 647, 456–462; https://doi.org/10.1016/j.jallcom.2015.06.056.Search in Google Scholar
52. Gayathri, V., Rameshbabu, M., Sasiflorence, S., Ravichandran, K., Ramachandran, K., Raja Mohan, C., Prabha, K. Mater. Today Proc. 2019, 35, 2–5; https://doi.org/10.1016/j.matpr.2019.05.299.Search in Google Scholar
53. Gholamrezaei, S., Salavati-Niasari, M. J. Mol. Liq. 2017, 243, 227–235; https://doi.org/10.1016/j.molliq.2017.08.031.Search in Google Scholar
54. Mohammadi, P., Ghorbani-Shahna, F., Bahrami, A., Rafati, A. A., Farhadian, M. J. Photochem. Photobiol., A 2020, 394, 112460; https://doi.org/10.1016/j.jphotochem.2020.112460.Search in Google Scholar
55. Shahabuddin, S., Sarih, N. M., Mohamad, S., Ching, J. J. Polymers 2016, 8, 27; https://doi.org/10.3390/polym8020027.Search in Google Scholar PubMed PubMed Central
56. Li, Y., Jin, R., Fang, X., Yang, Y., Yang, M., Liu, X., Xing, Y., Song, S. J. Hazard. Mater. 2016, 313, 219–228; https://doi.org/10.1016/j.jhazmat.2016.04.011.Search in Google Scholar PubMed
57. Abdelhafeez, I. A., Chen, J., Zhou, X. Sep. Purif. Technol. 2020, 250, 117085; https://doi.org/10.1016/j.seppur.2020.117085.Search in Google Scholar
58. Zhu, Y., Zhu, M., Lv, H., Zhao, S., Shen, X., Zhang, Q., Zhu, W., Li, B. J. Solid State Chem. 2020, 292, 121641; https://doi.org/10.1016/j.jssc.2020.121641.Search in Google Scholar
59. Chen, X., Li, H., Wu, Y., Wu, H., Wu, L., Tan, P., Pan, J., Xiong, X. J. Colloid Interface Sci. 2016, 476, 132–143; https://doi.org/10.1016/j.jcis.2016.05.024.Search in Google Scholar PubMed
60. Ramakrishnan, K., Gayathri, V., Aravinthkumar, K., Ramachandran, K., Ajitha, B., Rameshbabu, M., Sasiflorence, S., Karazhanov, S., Praba, K., Raja Mohan, C. Inorg. Chem. Commun. 2022, 144, 109842; https://doi.org/10.1016/j.inoche.2022.109842.Search in Google Scholar
61. Kanmani, S. S., Peter, I. J., Kumar, A. M., Nithiananthi, P., Raja Mohan, C., Ramachandran, K. Binary semiconductor metal oxide as photoanodes. In Interfacial Eng. Funct. Mater. Dye. Sol. Cells; John Wiley and Sons: New York, 2019; pp. 163–192.10.1002/9781119557401.ch8Search in Google Scholar
62. Immanuel, P., Prakash, A. A., Raja Mohan, C. AIP Conf. Proc. 2017, 1832, 080022-1–080022-3.10.1063/1.4980482Search in Google Scholar
63. Xian, T., Yang, H., Di, L., Ma, J., Zhang, H., Dai, J. Nanoscale Res. Lett. 2014, 9, 1–9.10.1186/1556-276X-9-327Search in Google Scholar PubMed PubMed Central
64. Tian, N., Huang, H., Zhang, Y. Appl. Surf. Sci. 2015, 358, 343–349; https://doi.org/10.1016/j.apsusc.2015.07.154.Search in Google Scholar
65. Yu, X., He, J., Zhang, Y., Hu, J., Chen, F., Wang, Y., He, G., Liu, J., He, Q. J. Alloys Compd. 2019, 806, 451–463; https://doi.org/10.1016/j.jallcom.2019.07.233.Search in Google Scholar
66. Perarasan, T., Peter, I. J., Kumar, A. M., Rajamanickam, N., Ramachandran, K., Raja Mohan, C. Mater. Today Proc. 2019, 35, 66–68.10.1016/j.matpr.2019.06.377Search in Google Scholar
67. Liqiang, J., Yichun, Q., Baiqi, W., Shudan, L., Baojiang, J., Libin, Y., Wei, F., Honggang, F., Jiazhong, S. Sol. Energy Mater. Sol. Cell. 2006, 90, 1773–1787; https://doi.org/10.1016/j.solmat.2005.11.007.Search in Google Scholar
68. Lanje, A. S., Sharma, S. J., Pode, R. B., Ningthoujam, R. S. Adv. Appl. Sci. Res. 2010, 1, 36–40.Search in Google Scholar
69. Wu, Y., Wang, H., Tu, W., Liu, Y., Tan, Y. Z., Yuan, X., Chew, J. W. J. Hazard. Mater. 2018, 347, 412–422; https://doi.org/10.1016/j.jhazmat.2018.01.025.Search in Google Scholar PubMed
70. Sun, L., Qi, Y., Jia, C. J., Jin, Z., Fan, W. Nanoscale 2014, 6, 2649–2659; https://doi.org/10.1039/c3nr06104c.Search in Google Scholar PubMed
71. Chilakapati, R. B., Hemanth Kumar, S., Satyanarayana, S. V., Behara, D. K. Z. Phys. Chem. 2021, 235, 1645–1660; https://doi.org/10.1515/zpch-2020-1717.Search in Google Scholar
72. Sun, M., Wang, Y., Shao, Y., He, Y., Zeng, Q., Liang, H., Yan, T., Du, B. J. Colloid Interface Sci. 2017, 501, 123–132; https://doi.org/10.1016/j.jcis.2017.04.047.Search in Google Scholar PubMed
73. Aanchal, Barman, S., Basu, S. Chemosphere 2020, 241, 124981; https://doi.org/10.1016/j.chemosphere.2019.124981.Search in Google Scholar PubMed
74. Jourshabani, M., Shariatinia, Z., Badiei, A. J. Colloid Interface Sci. 2017, 507, 59–73; https://doi.org/10.1016/j.jcis.2017.07.106.Search in Google Scholar PubMed
75. Wang, F., Li, W., Gu, S., Li, H., Liu, X., Ren, C. Catal. Commun. 2017, 96, 50–53; https://doi.org/10.1016/j.catcom.2017.04.004.Search in Google Scholar
76. Wang, J. C., Cui, C. X., Kong, Q. Q., Ren, C. Y., Li, Z., Qu, L., Zhang, Y., Jiang, K. ACS Sustain. Chem. Eng. 2018, 6, 8754–8761; https://doi.org/10.1021/acssuschemeng.8b01093.Search in Google Scholar
77. Alharthi, F. A., Alghamdi, A. A., Alanazi, H. S., Alsyahi, A. A., Ahmad, N. Catalysts 2020, 10, 1–16.10.1038/s41598-020-77426-ySearch in Google Scholar PubMed PubMed Central
78. Fu, D., Han, G., Liu, F., Xiao, Y., Wang, H., Liu, R., Liu, C. Mater. Sci. Semicond. Process. 2014, 27, 966–974; https://doi.org/10.1016/j.mssp.2014.08.004.Search in Google Scholar
79. Liu, J., Xu, H., Xu, Y., Song, Y., Lian, J., Zhao, Y., Wang, L., Huang, L., Ji, H., Li, H. Appl. Catal., B 2017, 207, 429–437; https://doi.org/10.1016/j.apcatb.2017.01.071.Search in Google Scholar
80. Liu, J., Song, Y., Xu, H., Zhu, X., Lian, J., Xu, Y., Zhao, Y., Huang, L., Ji, H., Li, H. J. Colloid Interface Sci. 2017, 494, 38–46; https://doi.org/10.1016/j.jcis.2017.01.010.Search in Google Scholar PubMed
81. Luo, B., Chen, M., Zhang, Z., Xu, J., Li, D., Xu, D., Shi, W. Dalt. Trans. 2017, 46, 8431–8438; https://doi.org/10.1039/c7dt01250k.Search in Google Scholar PubMed
82. Chen, X., Liu, L., Zhao, Y., Zhang, J., Li, D., Hu, B., Hai, X. ChemistrySelect 2017, 2, 9256–9260; https://doi.org/10.1002/slct.201701789.Search in Google Scholar
83. Hong, Y., Meng, Y., Zhang, G., Yin, B., Zhao, Y., Shi, W., Li, C. Sep. Purif. Technol. 2016, 171, 229–237; https://doi.org/10.1016/j.seppur.2016.07.025.Search in Google Scholar
84. Liu, F., Nguyen, T. P., Wang, Q., Massuyeau, F., Dan, Y., Jiang, L. Appl. Surf. Sci. 2019, 496, 143653; https://doi.org/10.1016/j.apsusc.2019.143653.Search in Google Scholar
85. Chen, D., Wu, S., Fang, J., Lu, S., Zhou, G. Y., Feng, W., Yang, F., Chen, Y., Fang, Z. Q. Sep. Purif. Technol. 2018, 193, 232–241; https://doi.org/10.1016/j.seppur.2017.11.011.Search in Google Scholar
86. Liu, Y., Liu, H., Zhou, H., Li, T., Zhang, L. Appl. Surf. Sci. 2019, 466, 133–140; https://doi.org/10.1016/j.apsusc.2018.10.027.Search in Google Scholar
87. Bankole, O. M., Olaseni, S. E., Adeyemo, M. A., Ogunlaja, A. S. Z. Phys. Chem. 2020, 234, 1681–1708; https://doi.org/10.1515/zpch-2019-1524.Search in Google Scholar
88. Ata, S., Shaheen, I., Majid, F., Bibi, I., Ijaz-Ul-Mohsin, Jilani, K., Slimani, Y., Iqbal, M. Z. Phys. Chem. 2021, 235, 1433–1445; https://doi.org/10.1515/zpch-19-1381.Search in Google Scholar
89. Ruan, S., Huang, W., Zhao, M., Song, H., Gao, Z. Mater. Sci. Semicond. Process. 2020, 107, 104835; https://doi.org/10.1016/j.mssp.2019.104835.Search in Google Scholar
90. Bantawal, H., Sethi, M., Shenoy, U. S., Bhat, D. K. ACS Appl. Nano Mater. 2019, 2, 6629–6636; https://doi.org/10.1021/acsanm.9b01513.Search in Google Scholar
91. Tessema, A. A., Wu, C. M., Motora, K. G. ACS Omega 2022, 7, 38475–38486; https://doi.org/10.1021/acsomega.2c03675.Search in Google Scholar PubMed PubMed Central
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Contributions to “Materials for Solar Water Splitting”
- Unveiling the role of rare earth dopant in metal molybdate nanocomposites via facile microwave-combustion strategy and their effect on antibacterial activity
- Effect of lanthanum (La) substitution on the magnetic and electrical properties of nickel ferrites: an investigation of its doping concentrations
- The relationship between environmental factors and dust accumulation by machine learning
- Facile formation of STO/gC3N4 hybrid composite to effectively degrade the dye and antibiotic under white light
- Investigation of the composition and morphology of raw materials from the Aral Sea region
- Chemical state and atomic structure in stoichiovariants photochromic oxidized yttrium hydride thin films
- Single crystal of barium bis para-nitrophenolate para-nitrophenol tetrahydrate for NLO applications: crystal growth and DFT analysis
- Characterization of single-crystal phenothiazine synthesized using the vertical Bridgman method
- Amidoxime functionalized mesoporous silica nanoparticles for pH-responsive delivery of anticancer drug
- Exploring optical and electrochemical studies on thulium selenite (TmSeO3)
Articles in the same Issue
- Frontmatter
- Contributions to “Materials for Solar Water Splitting”
- Unveiling the role of rare earth dopant in metal molybdate nanocomposites via facile microwave-combustion strategy and their effect on antibacterial activity
- Effect of lanthanum (La) substitution on the magnetic and electrical properties of nickel ferrites: an investigation of its doping concentrations
- The relationship between environmental factors and dust accumulation by machine learning
- Facile formation of STO/gC3N4 hybrid composite to effectively degrade the dye and antibiotic under white light
- Investigation of the composition and morphology of raw materials from the Aral Sea region
- Chemical state and atomic structure in stoichiovariants photochromic oxidized yttrium hydride thin films
- Single crystal of barium bis para-nitrophenolate para-nitrophenol tetrahydrate for NLO applications: crystal growth and DFT analysis
- Characterization of single-crystal phenothiazine synthesized using the vertical Bridgman method
- Amidoxime functionalized mesoporous silica nanoparticles for pH-responsive delivery of anticancer drug
- Exploring optical and electrochemical studies on thulium selenite (TmSeO3)