Startseite Naturwissenschaften Facile formation of STO/gC3N4 hybrid composite to effectively degrade the dye and antibiotic under white light
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Facile formation of STO/gC3N4 hybrid composite to effectively degrade the dye and antibiotic under white light

  • Kombiah Aravinthkumar , Smagul Karazhanov und Chinnan Raja Mohan EMAIL logo
Veröffentlicht/Copyright: 15. Februar 2024

Abstract

A novel organic-inorganic photocatalyst like layer structured graphitic carbon nitride (g-C3N4 or CN) hybrid with strontium titanate (SrTiO3 or STO) was prepared by a precipitation-sonication technique for photocatalytic activity. The crystal phases, morphologies, elemental composition, optical properties, and porous structure of the prepared pristine and STO/CN hybrid composite were measured using various physicochemical characterizations. It is indicated that STO nanospheres were effectively loaded on the g-C3N4 nanosheets, resulting in the STO/CN hybrid composite, high surface area, enhanced visible-light absorption, enhancing photoinduced charge separation and suppressing the recombination rate. Furthermore, the 3 wt% of g-C3N4 composited STO (STO/CN-3) catalyst demonstrated higher photocatalytic activity than pristine STO in 100 min under white light irradiation, reaching the degradation efficiency of 92.66 % and 93.31 % toward methylene blue (MB) and tetracycline (TC), respectively. The improved photocatalytic activity of STO/gCN hybrid composite could be ascribed to the synergistic effect between STO and CN with strong interfacial interaction facilitating efficient charge separation and inhibiting the charge recombination of photogenerated electron-hole pairs. Moreover, a possible photocatalytic mechanism has been proposed for the degradation of MB and TC. Besides, the excellent photocatalytic performance, STO/CN-3 nanocomposite also exhibits outstanding photostability under the current factors, suggesting that they are suitable for practical applications.


Corresponding author: Chinnan Raja Mohan, Nanostructure Lab, Department of Physics, The Gandhigram Rural Institute – Deemed to be University, Gandhigram 624302, Tamil Nadu, India, E-mail:

Acknowledgements

The author K. Aravinthkumar thank the Joint Council of Scientific & Industrial Research (CSIR) – University Grants Commission (UGC), Government of India for the financial support in the form of fellowship for this work through the NET-SRF Award (NTA Ref. No.: 201610274875 dated 01.04.2021). C.Raja Mohan Thanks Prof.G.Muralidharan for useful discussions.

  1. Research ethics: Not applicable.

  2. Author contributions: K. Aravinthkumar: Conceptualization, Methodology, Investigation, Formal analysis, Writing – Original Draft. S. Karazhanov: Formal analysis, Software and Review. C. Raja Mohan: Conceptualization, Validation, Visualization, Writing – Review & Editing, Supervision.

  3. Competing interests: The authors declare that they have no conflict of interest to the publication of this article.

  4. Research funding: None declared.

  5. Data availability: Data will be made available on request.

References

1. Gangu, K. K., Maddila, S., Jonnalagadda, S. B. Sci. Total Environ. 2019, 646, 1398–1412; https://doi.org/10.1016/j.scitotenv.2018.07.375.Suche in Google Scholar PubMed

2. Rahman, Q. I., Ahmad, M., Misra, S. K., Lohani, M. Mater. Lett. 2013, 91, 170–174; https://doi.org/10.1016/j.matlet.2012.09.044.Suche in Google Scholar

3. Zhang, G., Wu, H., Chen, D., Li, N., Xu, Q., Li, H., He, J., Lu, J. Green Energy Environ. 2022, 7, 176–204; https://doi.org/10.1016/j.gee.2020.12.015.Suche in Google Scholar

4. Jabbar, Z. H., Graimed, B. H. J. Water Process Eng. 2022, 47, 102671; https://doi.org/10.1016/j.jwpe.2022.102671.Suche in Google Scholar

5. Kiss, B., Manning, T. D., Hesp, D., Didier, C., Taylor, A., Pickup, D. M., Chadwick, A. V., Allison, H. E., Dhanak, V. R., Claridge, J. B., Darwent, J. R., Rosseinsky, M. J. Appl. Catal., B 2017, 206, 547–555; https://doi.org/10.1016/j.apcatb.2017.01.066.Suche in Google Scholar

6. Jabbar, Z. H., Graimed, B. H., Issa, M. A., Ammar, S. H., Ebrahim, S. E., Khadim, H. J., Okab, A. A. Mater. Sci. Semicond. Process. 2023, 153, 107151; https://doi.org/10.1016/j.mssp.2022.107151.Suche in Google Scholar

7. Issa, M. A., Zentou, H., Jabbar, Z. H., Abidin, Z. Z., Harun, H., Halim, N. A. A., Alkhabet, M. M., Pudza, M. Y. Environ. Sci. Pollut. Res. 2022, 29, 86859–86872; https://doi.org/10.1007/s11356-022-21844-0.Suche in Google Scholar PubMed PubMed Central

8. Li, Y., Dong, H., Li, L., Tang, L., Tian, R., Li, R., Chen, J., Xie, Q., Jin, Z., Xiao, J., Xiao, S., Zeng, G. Water Res. 2021, 192, 116850; https://doi.org/10.1016/j.watres.2021.116850.Suche in Google Scholar PubMed

9. Huang, C. P., Dong, C., Tang, Z. Waste Manag. 1993, 13, 361–377; https://doi.org/10.1016/0956-053x(93)90070-d.Suche in Google Scholar

10. Deng, Y., Zhao, R. Curr. Pollut. Rep. 2015, 1, 167–176; https://doi.org/10.1007/s40726-015-0015-z.Suche in Google Scholar

11. Ince, N. H., Apikyan, I. G. Water Res. 2000, 34, 4169–4176; https://doi.org/10.1016/s0043-1354(00)00194-9.Suche in Google Scholar

12. Zhang, B., Wang, D., Cao, J., Zhao, C., Pan, J., Liu, D., Liu, S., Zeng, Z., Chen, T., Liu, G., Jiao, S., Xu, Z., Huang, Y., Zhao, L., Wang, J. ACS Appl. Mater. Interfaces 2023, 15, 12924–12935; https://doi.org/10.1021/acsami.2c19209.Suche in Google Scholar PubMed

13. Yang, Z., Lin, Q., Zeng, G., Zhao, S., Yan, G., Ang, M. B. M. Y., Chiao, Y. H., Pu, S. J. Memb. Sci. 2023, 669, 121329; https://doi.org/10.1016/j.memsci.2022.121329.Suche in Google Scholar

14. Velmurugan, G., Ganapathi Raman, R., Sivaprakash, P., Viji, A., Cho, S. H., Kim, I. Nanomaterials 2023, 13, 2494; https://doi.org/10.3390/nano13172494.Suche in Google Scholar PubMed PubMed Central

15. Kareem, M. A., Bello, I. T., Shittu, H. A., Sivaprakash, P., Adedokun, O., Arumugam, S. Clean. Mater. 2022, 3, 100041; https://doi.org/10.1016/j.clema.2022.100041.Suche in Google Scholar

16. Maqsood, J., Fallatah, A. M., Zaki, Z. I., Akhtar, M., Irshad, A. Z. Phys. Chem. 2023, 237, 1505–1523; https://doi.org/10.1515/zpch-2023-0272.Suche in Google Scholar

17. Gayathri, V., Muthukumar, A., Raja Mohan, C. Colloids Surf., A 2024, 683, 132973; https://doi.org/10.1016/j.colsurfa.2023.132973.Suche in Google Scholar

18. Immanuel, P., Raja Mohan, C. Mater. Focus 2016, 5, 362–367; https://doi.org/10.1166/mat.2016.1363.Suche in Google Scholar

19. Paulraj, S., Raman, K., Mohan, C. R., Janarthanan, R., Ashokkumar, K., Ulagan, M. P. J. Agric. Food Res. 2022, 9, 100343; https://doi.org/10.1016/j.jafr.2022.100343.Suche in Google Scholar

20. Suganya, P., Rajamohan, C., Mahalingam, P. U. Mater. Res. Express 2018, 6, 025409; https://doi.org/10.1088/2053-1591/aaf0c2.Suche in Google Scholar

21. Yue, X., Zhang, J., Yan, F., Wang, X., Huang, F. Appl. Surf. Sci. 2014, 319, 68–74; https://doi.org/10.1016/j.apsusc.2014.07.100.Suche in Google Scholar

22. Reihl, B., Bednorz, J. G., Müller, K. A., Jugnet, Y., Landgren, G., Morar, J. F. Properties of Perovskites and other Oxides, Vol. 30; World Scientific: Singapore, 2010; pp. 507–510.Suche in Google Scholar

23. García-López, E., Marcì, G., Megna, B., Parisi, F., Armelao, L., Trovarelli, A., Boaro, M., Palmisano, L. J. Catal. 2015, 321, 13–22; https://doi.org/10.1016/j.jcat.2014.10.014.Suche in Google Scholar

24. Aravinthkumar, K., Peter, I. J., Babu, G. A., Navaneethan, M., Karazhanov, S., Raja Mohan, C. Mater. Lett. 2022, 319, 132284; https://doi.org/10.1016/j.matlet.2022.132284.Suche in Google Scholar

25. Aravinthkumar, K., Anandha babu, G., Raja Mohan, C. Colloids Surf., A 2023, 672, 131702; https://doi.org/10.1016/j.colsurfa.2023.131702.Suche in Google Scholar

26. Liu, J., Zhang, L., Li, N., Tian, Q., Zhou, J., Sun, Y. J. Mater. Chem. A 2015, 3, 706–712; https://doi.org/10.1039/c4ta04984e.Suche in Google Scholar

27. Immanuel, P., Mahendiran, D., Ramachandran, K., Jacquiline Regina Mary, A., Raja Mohan, C. Mater. Today Proc. 2022, 68, 523–533; https://doi.org/10.1016/j.matpr.2022.08.018.Suche in Google Scholar

28. Patnaik, S., Martha, S., Acharya, S., Parida, K. M. Inorg. Chem. Front. 2016, 3, 336–347; https://doi.org/10.1039/c5qi00255a.Suche in Google Scholar

29. Wen, J., Xie, J., Chen, X., Li, X. Appl. Surf. Sci. 2017, 391, 72–123; https://doi.org/10.1016/j.apsusc.2016.07.030.Suche in Google Scholar

30. Liu, Y., Su, F. Y., Yu, Y. X., De Zhang, W. Int. J. Hydrogen Energy 2016, 41, 7270–7279; https://doi.org/10.1016/j.ijhydene.2016.03.113.Suche in Google Scholar

31. Ahmaruzzaman, M., Mishra, S. R. Mater. Res. Bull. 2021, 143, 111417; https://doi.org/10.1016/j.materresbull.2021.111417.Suche in Google Scholar

32. Xu, Y., Li, W., Xu, T., Wang, G., Huan, W., Si, C. Adv. Compos. Hybrid Mater. 2023, 6, 1–13.10.1007/s42114-023-00779-1Suche in Google Scholar

33. Gayathri, V., John Peter, I., Ramachandran, K., Karazhanov, S., Raja Mohan, C. Energy Fuels 2021, 35, 13360–13369; https://doi.org/10.1021/acs.energyfuels.1c01471.Suche in Google Scholar

34. Gayathri, V., Peter, I. J., Raja Mohan, C. ECS J. Solid State Sci. Technol. 2021, 10, 091002; https://doi.org/10.1149/2162-8777/ac2218.Suche in Google Scholar

35. Gayathri, V., Praveen, E., Jayakumar, K., Karazhanov, S., Raja Mohan, C. Colloids Surf., A 2023, 662, 130948; https://doi.org/10.1016/j.colsurfa.2023.130948.Suche in Google Scholar

36. Krishnan, S. V., Palanivelu, S., Ambalam, M. M. M., Venkatesan, R., Arivalagan, M., Pearce, J. M., Mayandi, J. Z. Phys. Chem. 2018, 232, 1827–1842; https://doi.org/10.1515/zpch-2017-1075.Suche in Google Scholar

37. Parveen, S., Alzahrani, F. M. A., Al Huwayz, M., Adan, W., Alrowaili, Z. A., Noor-ul-Ain, Chaudhary, K., Al-Buriahi, M. S. Z. Phys. Chem. 2023, 237, 1691–1711; https://doi.org/10.1515/zpch-2023-0267.Suche in Google Scholar

38. Tran, H. H., Truong, D. H., Truong, T. T., Xuan Dieu Nguyen, T., Jin, Y. S., Kim, S. J., Vo, V. Bull. Korean Chem. Soc. 2018, 39, 965–971; https://doi.org/10.1002/bkcs.11536.Suche in Google Scholar

39. Li, Y., Wang, X., Wang, X., Xia, Y., Zhang, A., Shi, J., Gao, L., Wei, H., Chen, W. Colloids Surf., A 2021, 618, 126445; https://doi.org/10.1016/j.colsurfa.2021.126445.Suche in Google Scholar

40. Kappadan, S., Thomas, S., Kalarikkal, N. Chem. Phys. Lett. 2021, 771, 138513; https://doi.org/10.1016/j.cplett.2021.138513.Suche in Google Scholar

41. Neena, N., Humayun, M., Bhattacharyya, D., Fu, D. J. J. Photochem. Photobiol., A 2020, 396, 112515.10.1016/j.jphotochem.2020.112515Suche in Google Scholar

42. Cai, W., Tang, J., Shi, Y., Wang, H., Jiang, X. ACS Omega 2019, 4, 22187–22196; https://doi.org/10.1021/acsomega.9b03471.Suche in Google Scholar PubMed PubMed Central

43. Aravinthkumar, K., Praveen, E., Jacquline Regina Mary, A., Raja Mohan, C. Inorg. Chem. Commun. 2022, 140, 109451; https://doi.org/10.1016/j.inoche.2022.109451.Suche in Google Scholar

44. Wei, H., Cai, J., Zhang, Y., Zhang, X., Baranova, E. A., Cui, J., Wang, Y., Shu, X., Qin, Y., Liu, J., Wu, Y. RSC Adv. 2020, 10, 42619–42627; https://doi.org/10.1039/d0ra08246e.Suche in Google Scholar PubMed PubMed Central

45. Shen, J., Yang, H., Shen, Q., Feng, Y., Cai, Q. CrystEngComm 2014, 16, 1868–1872.10.1039/C3CE42513DSuche in Google Scholar

46. Xian, T., Yang, H., Di, L. J., Dai, J. F. J. Alloys Compd. 2015, 622, 1098–1104; https://doi.org/10.1016/j.jallcom.2014.11.051.Suche in Google Scholar

47. Pareek, S., Sharma, M., Lal, S., Quamara, J. K. J. Mater. Sci. Mater. Electron. 2018, 29, 13043–13051; https://doi.org/10.1007/s10854-018-9426-0.Suche in Google Scholar

48. Konstas, P. S., Konstantinou, I., Petrakis, D., Albanis, T. Catalysts 2018, 8, 554; https://doi.org/10.3390/catal8110554.Suche in Google Scholar

49. Bashiri, R., Mohamed, N. M., Suhaimi, N. A., Shahid, M. U., Kait, C. F., Sufian, S., Khatani, M., Mumtaz, A. Diam. Relat. Mater. 2018, 85, 5–12; https://doi.org/10.1016/j.diamond.2018.03.019.Suche in Google Scholar

50. Shaheen, M., Bhatti, I. A., Ashar, A., Mohsin, M., Nisar, J., Almoneef, M. M., Iqbal, M. Z. Phys. Chem. 2021, 235, 1395–1412; https://doi.org/10.1515/zpch-2020-1741.Suche in Google Scholar

51. Chen, X., Tan, P., Zhou, B., Dong, H., Pan, J., Xiong, X. J. Alloys Compd. 2015, 647, 456–462; https://doi.org/10.1016/j.jallcom.2015.06.056.Suche in Google Scholar

52. Gayathri, V., Rameshbabu, M., Sasiflorence, S., Ravichandran, K., Ramachandran, K., Raja Mohan, C., Prabha, K. Mater. Today Proc. 2019, 35, 2–5; https://doi.org/10.1016/j.matpr.2019.05.299.Suche in Google Scholar

53. Gholamrezaei, S., Salavati-Niasari, M. J. Mol. Liq. 2017, 243, 227–235; https://doi.org/10.1016/j.molliq.2017.08.031.Suche in Google Scholar

54. Mohammadi, P., Ghorbani-Shahna, F., Bahrami, A., Rafati, A. A., Farhadian, M. J. Photochem. Photobiol., A 2020, 394, 112460; https://doi.org/10.1016/j.jphotochem.2020.112460.Suche in Google Scholar

55. Shahabuddin, S., Sarih, N. M., Mohamad, S., Ching, J. J. Polymers 2016, 8, 27; https://doi.org/10.3390/polym8020027.Suche in Google Scholar PubMed PubMed Central

56. Li, Y., Jin, R., Fang, X., Yang, Y., Yang, M., Liu, X., Xing, Y., Song, S. J. Hazard. Mater. 2016, 313, 219–228; https://doi.org/10.1016/j.jhazmat.2016.04.011.Suche in Google Scholar PubMed

57. Abdelhafeez, I. A., Chen, J., Zhou, X. Sep. Purif. Technol. 2020, 250, 117085; https://doi.org/10.1016/j.seppur.2020.117085.Suche in Google Scholar

58. Zhu, Y., Zhu, M., Lv, H., Zhao, S., Shen, X., Zhang, Q., Zhu, W., Li, B. J. Solid State Chem. 2020, 292, 121641; https://doi.org/10.1016/j.jssc.2020.121641.Suche in Google Scholar

59. Chen, X., Li, H., Wu, Y., Wu, H., Wu, L., Tan, P., Pan, J., Xiong, X. J. Colloid Interface Sci. 2016, 476, 132–143; https://doi.org/10.1016/j.jcis.2016.05.024.Suche in Google Scholar PubMed

60. Ramakrishnan, K., Gayathri, V., Aravinthkumar, K., Ramachandran, K., Ajitha, B., Rameshbabu, M., Sasiflorence, S., Karazhanov, S., Praba, K., Raja Mohan, C. Inorg. Chem. Commun. 2022, 144, 109842; https://doi.org/10.1016/j.inoche.2022.109842.Suche in Google Scholar

61. Kanmani, S. S., Peter, I. J., Kumar, A. M., Nithiananthi, P., Raja Mohan, C., Ramachandran, K. Binary semiconductor metal oxide as photoanodes. In Interfacial Eng. Funct. Mater. Dye. Sol. Cells; John Wiley and Sons: New York, 2019; pp. 163–192.10.1002/9781119557401.ch8Suche in Google Scholar

62. Immanuel, P., Prakash, A. A., Raja Mohan, C. AIP Conf. Proc. 2017, 1832, 080022-1–080022-3.10.1063/1.4980482Suche in Google Scholar

63. Xian, T., Yang, H., Di, L., Ma, J., Zhang, H., Dai, J. Nanoscale Res. Lett. 2014, 9, 1–9.10.1186/1556-276X-9-327Suche in Google Scholar PubMed PubMed Central

64. Tian, N., Huang, H., Zhang, Y. Appl. Surf. Sci. 2015, 358, 343–349; https://doi.org/10.1016/j.apsusc.2015.07.154.Suche in Google Scholar

65. Yu, X., He, J., Zhang, Y., Hu, J., Chen, F., Wang, Y., He, G., Liu, J., He, Q. J. Alloys Compd. 2019, 806, 451–463; https://doi.org/10.1016/j.jallcom.2019.07.233.Suche in Google Scholar

66. Perarasan, T., Peter, I. J., Kumar, A. M., Rajamanickam, N., Ramachandran, K., Raja Mohan, C. Mater. Today Proc. 2019, 35, 66–68.10.1016/j.matpr.2019.06.377Suche in Google Scholar

67. Liqiang, J., Yichun, Q., Baiqi, W., Shudan, L., Baojiang, J., Libin, Y., Wei, F., Honggang, F., Jiazhong, S. Sol. Energy Mater. Sol. Cell. 2006, 90, 1773–1787; https://doi.org/10.1016/j.solmat.2005.11.007.Suche in Google Scholar

68. Lanje, A. S., Sharma, S. J., Pode, R. B., Ningthoujam, R. S. Adv. Appl. Sci. Res. 2010, 1, 36–40.Suche in Google Scholar

69. Wu, Y., Wang, H., Tu, W., Liu, Y., Tan, Y. Z., Yuan, X., Chew, J. W. J. Hazard. Mater. 2018, 347, 412–422; https://doi.org/10.1016/j.jhazmat.2018.01.025.Suche in Google Scholar PubMed

70. Sun, L., Qi, Y., Jia, C. J., Jin, Z., Fan, W. Nanoscale 2014, 6, 2649–2659; https://doi.org/10.1039/c3nr06104c.Suche in Google Scholar PubMed

71. Chilakapati, R. B., Hemanth Kumar, S., Satyanarayana, S. V., Behara, D. K. Z. Phys. Chem. 2021, 235, 1645–1660; https://doi.org/10.1515/zpch-2020-1717.Suche in Google Scholar

72. Sun, M., Wang, Y., Shao, Y., He, Y., Zeng, Q., Liang, H., Yan, T., Du, B. J. Colloid Interface Sci. 2017, 501, 123–132; https://doi.org/10.1016/j.jcis.2017.04.047.Suche in Google Scholar PubMed

73. Aanchal, Barman, S., Basu, S. Chemosphere 2020, 241, 124981; https://doi.org/10.1016/j.chemosphere.2019.124981.Suche in Google Scholar PubMed

74. Jourshabani, M., Shariatinia, Z., Badiei, A. J. Colloid Interface Sci. 2017, 507, 59–73; https://doi.org/10.1016/j.jcis.2017.07.106.Suche in Google Scholar PubMed

75. Wang, F., Li, W., Gu, S., Li, H., Liu, X., Ren, C. Catal. Commun. 2017, 96, 50–53; https://doi.org/10.1016/j.catcom.2017.04.004.Suche in Google Scholar

76. Wang, J. C., Cui, C. X., Kong, Q. Q., Ren, C. Y., Li, Z., Qu, L., Zhang, Y., Jiang, K. ACS Sustain. Chem. Eng. 2018, 6, 8754–8761; https://doi.org/10.1021/acssuschemeng.8b01093.Suche in Google Scholar

77. Alharthi, F. A., Alghamdi, A. A., Alanazi, H. S., Alsyahi, A. A., Ahmad, N. Catalysts 2020, 10, 1–16.10.1038/s41598-020-77426-ySuche in Google Scholar PubMed PubMed Central

78. Fu, D., Han, G., Liu, F., Xiao, Y., Wang, H., Liu, R., Liu, C. Mater. Sci. Semicond. Process. 2014, 27, 966–974; https://doi.org/10.1016/j.mssp.2014.08.004.Suche in Google Scholar

79. Liu, J., Xu, H., Xu, Y., Song, Y., Lian, J., Zhao, Y., Wang, L., Huang, L., Ji, H., Li, H. Appl. Catal., B 2017, 207, 429–437; https://doi.org/10.1016/j.apcatb.2017.01.071.Suche in Google Scholar

80. Liu, J., Song, Y., Xu, H., Zhu, X., Lian, J., Xu, Y., Zhao, Y., Huang, L., Ji, H., Li, H. J. Colloid Interface Sci. 2017, 494, 38–46; https://doi.org/10.1016/j.jcis.2017.01.010.Suche in Google Scholar PubMed

81. Luo, B., Chen, M., Zhang, Z., Xu, J., Li, D., Xu, D., Shi, W. Dalt. Trans. 2017, 46, 8431–8438; https://doi.org/10.1039/c7dt01250k.Suche in Google Scholar PubMed

82. Chen, X., Liu, L., Zhao, Y., Zhang, J., Li, D., Hu, B., Hai, X. ChemistrySelect 2017, 2, 9256–9260; https://doi.org/10.1002/slct.201701789.Suche in Google Scholar

83. Hong, Y., Meng, Y., Zhang, G., Yin, B., Zhao, Y., Shi, W., Li, C. Sep. Purif. Technol. 2016, 171, 229–237; https://doi.org/10.1016/j.seppur.2016.07.025.Suche in Google Scholar

84. Liu, F., Nguyen, T. P., Wang, Q., Massuyeau, F., Dan, Y., Jiang, L. Appl. Surf. Sci. 2019, 496, 143653; https://doi.org/10.1016/j.apsusc.2019.143653.Suche in Google Scholar

85. Chen, D., Wu, S., Fang, J., Lu, S., Zhou, G. Y., Feng, W., Yang, F., Chen, Y., Fang, Z. Q. Sep. Purif. Technol. 2018, 193, 232–241; https://doi.org/10.1016/j.seppur.2017.11.011.Suche in Google Scholar

86. Liu, Y., Liu, H., Zhou, H., Li, T., Zhang, L. Appl. Surf. Sci. 2019, 466, 133–140; https://doi.org/10.1016/j.apsusc.2018.10.027.Suche in Google Scholar

87. Bankole, O. M., Olaseni, S. E., Adeyemo, M. A., Ogunlaja, A. S. Z. Phys. Chem. 2020, 234, 1681–1708; https://doi.org/10.1515/zpch-2019-1524.Suche in Google Scholar

88. Ata, S., Shaheen, I., Majid, F., Bibi, I., Ijaz-Ul-Mohsin, Jilani, K., Slimani, Y., Iqbal, M. Z. Phys. Chem. 2021, 235, 1433–1445; https://doi.org/10.1515/zpch-19-1381.Suche in Google Scholar

89. Ruan, S., Huang, W., Zhao, M., Song, H., Gao, Z. Mater. Sci. Semicond. Process. 2020, 107, 104835; https://doi.org/10.1016/j.mssp.2019.104835.Suche in Google Scholar

90. Bantawal, H., Sethi, M., Shenoy, U. S., Bhat, D. K. ACS Appl. Nano Mater. 2019, 2, 6629–6636; https://doi.org/10.1021/acsanm.9b01513.Suche in Google Scholar

91. Tessema, A. A., Wu, C. M., Motora, K. G. ACS Omega 2022, 7, 38475–38486; https://doi.org/10.1021/acsomega.2c03675.Suche in Google Scholar PubMed PubMed Central

Received: 2023-10-31
Accepted: 2024-01-17
Published Online: 2024-02-15
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0398/html
Button zum nach oben scrollen