Startseite Naturwissenschaften Synthesis, X-ray diffraction, DFT, and molecular docking studies of isonicotinohydrazide derivative
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis, X-ray diffraction, DFT, and molecular docking studies of isonicotinohydrazide derivative

  • Aysha Fatima , Nazia Siddiqui , Ghazala Khanum , Nazrul Haq , Ray J. Butcher , Sanjay Kumar Srivastava EMAIL logo und Saleem Javed EMAIL logo
Veröffentlicht/Copyright: 11. Dezember 2023

Abstract

The synthesized compound N′-benzylidene-isonicotinohydrazide (N-BINH), was experimentally characterized using XRD and distinguished by using experimental spectroscopic methods. DFT, B3LYP method along with 6-311++G(d,p) basis set were applied to determine the optimal molecular geometry and vibrational wave numbers. Gauge Independent Atomic Orbital (GIAO) method and DFT were used to calculate the chemical shifts for 13C and 1H NMR in chloroform solvent. MEP analysis reveals that the site with an oxygen atom is the most reactive part of the N-BINH molecule. Computed UV–visible spectrum in MeOH and gas phase was generated by using the TD-DFT technique. The investigation also looked at electron localization function properties. Hirshfeld analysis demonstrates the 3D intermolecular interactions of the crystal surface, while fingerprint plots were used to elucidate the 2D interactions. By calculating the electrophilicity index, it was theoretically shown that the titled molecule could be bioactive. Further, molecular docking analysis was used to investigate the biological activity of the N-BINH with four distinct receptors to assess the finest ligand–protein interactions and similarity to the dynamic constituent.


Corresponding authors: Sanjay Kumar Srivastava, S.O.S in Chemistry, Jiwaji University, Gwalior, 474011, M.P, India, E-mail: ; and Saleem Javed, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India, E-mail:

Acknowledgments

We thank Jiwaji University Gwalior for the infrastructure facility and CIF for spectroscopic measurements and Jamia Millia Islamia, New Delhi for the infra structure and facility.

  1. Research ethics: All the research ethics have been followed by the authors.

  2. Author contributions: Aysha Fatima: Writing – original draft, Visualization, Investigation; Nazia Siddiqui: Calculations, Visualization, Plotting graphs and editing; Ghazala Khanum: Analysis; Nazrul Haq: Experiment, Writing – review & editing; R. J. Butcher: Data curation, Resources; Sanjay Kumar Srivastava: Experiment, Writing – review & editing; Saleem Javed: Conceptualization, Methodology, Software, Editing, Supervision.

  3. Competing interests: Authors state no conflict of interest.

  4. Research funding: The authors are thankful to the Researchers Supporting Project number (RSPD2023R1116) at King Saud University, Riyadh, Saudi Arabia for supporting this research.

  5. Data availability: The crystal data has been available with the CCDC No. 2106155 at https://www.ccdc.cam.ac.uk/structures/.

References

1. Liu, E., Lia, L., Davis, K., Zhang, G. J. Mol. Struct. 2019, 1188, 1–6, https://doi.org/10.1016/j.molstruc.2019.02.044.Suche in Google Scholar

2. EL-Gammal, O. A., Alshater, H., El-Boraey, H. A. J. Mol. Struct. 2019, 1195, 220–230, https://doi.org/10.1016/j.molstruc.2019.05.101.Suche in Google Scholar

3. Raviglione, M. C., Dy, C., Schmidt, S., Kochi, A. Lancet 1997, 350, 624–629, https://doi.org/10.1016/s0140-6736(97)04146-9.Suche in Google Scholar PubMed

4. Ojha, S., Bapna, A., Talesara, G. L. ARKIVOC 2008, 11, 112–122.10.3998/ark.5550190.0009.b11Suche in Google Scholar

5. Sethuram, M., Rajasekharan, M. V., Dhandapani, M., Amirthaganesan, G., Nizam Mohideen, M. Acta Crystallogr. 2013, E69, o957–o958.10.1107/S1600536813013949Suche in Google Scholar PubMed PubMed Central

6. Torje, I. A., Valean, A.-M., Cristea, C. Rev. Roum. Chim. 2012, 57, 337–344.Suche in Google Scholar

7. Wei, Z., Wang, J., Jiang, X., Li, Y., Chen, G., Xie, Q. Chin. J. Appl. Chem. 2015, 32, 1014–1020.Suche in Google Scholar

8. Cymerman-Craig, J., Willis, D., Rubbo, S. D., Edgar, J. Nature 1995, 176, 34–35, https://doi.org/10.1038/176034a0.Suche in Google Scholar PubMed

9. Zubrys, A., Siebenmann, C. O. Can. J. Chem. 1955, 33, 11–14, https://doi.org/10.1139/v55-003.Suche in Google Scholar

10. Maccari, R., Ottan, R., Vigorita, M. G. Bioorg. Med. Chem. Lett. 2005, 15, 2509–2513, https://doi.org/10.1016/j.bmcl.2005.03.065.Suche in Google Scholar PubMed

11. Lamelas, R., Fernández-Lodeiro, A., Bastida, R., Labisbal, E., Macías, A., Núñez, C., Lodeiro, C., Yáñez, M. Inorg. Chim. Acta 2017, 456, 34–43, https://doi.org/10.1016/j.ica.2016.10.047.Suche in Google Scholar

12. Kakimoto, S., Yashamoto, K. Pharm. Bull. 1956, 4, 4–6, https://doi.org/10.1248/cpb1953.4.4.Suche in Google Scholar PubMed

13. Gallego, M., García Vargas, M., Valcarcel, M. Analyst 1979, 104, 613–619, https://doi.org/10.1039/an9790400613.Suche in Google Scholar

14. Gallego, M., Garcia Vargas, M., Pino, F., Valcarcel, M. Microchem. J. 1978, 23, 353–359, https://doi.org/10.1016/0026-265x(78)90088-7.Suche in Google Scholar

15. Liaw, W., Lee, N., Chen, C., Lee, C., Lee, G., Peng, S. J. Am. Chem. Soc. 2000, 122, 488–494, https://doi.org/10.1021/ja992300q.Suche in Google Scholar

16(a). Sagaama, A., Issaoui, N., Al-Dossary, O., Kazachenko, A. S., Wojcik, M. J. Heliyon 2021, 7, e08204; https://doi.org/10.1016/j.jksus.2021.101606.Suche in Google Scholar

(b) Jomaa, I., Issaoui, N., Roisnel, T., Marouani, H. J. Mol. Struct. 2020, 1213, 128186; https://doi.org/10.1016/j.molstruc.2021.130730.Suche in Google Scholar

17. Rajpure, K. Y., Bhosale, C. H. Sb2S3 semiconductor-septum rechargeable storage cell. Mater. Chem. Phys. 2000, 64, 70–74, https://doi.org/10.1016/s0254-0584(99)00240-0.Suche in Google Scholar

18. Fatima, A., Khanum, G., Agrawal, D. D., Srivastava, S. K., Butcher, R. J., Muthu, S., Ahmad, M., Althubeiti, K., Siddiqui, N., Javed, S. Polycycl. Aromat. Compd. 2023, 43, 4242–4270; https://doi.org/10.1080/10406638.2022.2089174.Suche in Google Scholar

19. Fatima, A., Khanum, G., Verma, I., Butcher, R. J., Siddiqui, N., Srivastava, S. K., Javed, S. Polycycl. Aromat. Compd. 2023, 43, 1644–1675; https://doi.org/10.1080/10406638.2022.2032769.Suche in Google Scholar

20. Fatima, A., Khanum, G., Sharma, A., Verma, I., Arora, H., Siddiqui, N., Javed, S. Polycyclic Aromat. Compd. 2023, 43, 1263–1287, https://doi.org/10.1080/10406638.2022.2026989.Suche in Google Scholar

21. Agarwal, N., Verma, I., Siddiqui, N., Javed, S. J. Mol. Struct. 2021, 1245, 131046, https://doi.org/10.1016/j.molstruc.2021.131046.Suche in Google Scholar

22. Fatima, A., Ghazala, K., Arun, S., Nazia, S., Muthu, S., Butcher, R. J., Srivastava, S. K., Javed, S. J. Mol. Struct. 2022, 1268, 133613, https://doi.org/10.1016/j.molstruc.2022.133613.Suche in Google Scholar

23(a). Fatima, A., Arora, H., Bhattacharya, P., Siddiqui, N., Abualnaja, K. M., Garg, P., Javed, S. J. Mol. Struct. 2023, 1273, 134242, https://doi.org/10.1016/j.molstruc.2022.134242.Suche in Google Scholar

(b) Janani, S., Rajagopal, H., Muthu, S., Javed, S., Irfan, A. J. Indian Chem. Soc. 2022, 99, 100438, https://doi.org/10.1016/j.jics.2022.100438.Suche in Google Scholar

24. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford CT, 2016.Suche in Google Scholar

25. Ayako, N., Yutaka, I., Hiromi, N. J. Chem. Phys. 2006, 125, 064109.Suche in Google Scholar

26. Lutnaes, O. B., Torgeir, A. R., Trygve, H. Magn. Reson. Chem. 2004, 42, S117–S127, https://doi.org/10.1002/mrc.1457.Suche in Google Scholar PubMed

27. Bernhard, S. Geometry optimization. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 01, 790–809.10.1002/wcms.34Suche in Google Scholar

28. Peter, P., Jane, S. M. Molecular electrostatic potentials: significance and applications. In Chemical Reactivity in Confined Systems: Theory, Modelling and Applications; Chattaraj P. K, Chakraborty D., Eds. Wiley Online Library, 2021; pp. 113–134.10.1002/9781119683353.ch7Suche in Google Scholar

29. Levamaki, H., Vitos, L. Electron localization function implementation in the exact muffin-tin orbitals method. Phys. Rev. B 2021, 103, 035118, https://doi.org/10.1103/physrevb.103.035118.Suche in Google Scholar

30. Mark Spackman, A., Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32; https://doi.org/10.1039/b818330a.Suche in Google Scholar

31. Muhammad, A., Khurram, S. M., Muhammad, N. T., Necmi, D., Mavise, Y., Shabbir, M., Saleh, S. A., Hadi, K., Muhammad, U. A. ACS Omega 2021, 6, 22357–22366, https://doi.org/10.1021/acsomega.1c03078.Suche in Google Scholar PubMed PubMed Central

32. Peter, R. S., Michael, J. T., Joshua, J. M., Stephen, K. W., Daniel, J. G., Dylan, J., Mark, A. S. J. Appl. Crystallogr. 2021, 54, 1006–1011, https://doi.org/10.1107/s1600576721002910.Suche in Google Scholar PubMed PubMed Central

33. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605–1612, https://doi.org/10.1002/jcc.20084.Suche in Google Scholar PubMed

34. Origin 8.0; OriginLab Corp: Northampton, MA.Suche in Google Scholar

35. Xu, J., You-Qin, S., Ping, H. Z. Kristallogr. – New Cryst. Struct. 2011, 226, 63–64, https://doi.org/10.1524/ncrs.2011.0031.Suche in Google Scholar

36. Ditchfield, R. J. Chem. Phys. 1972, 56, 5688–5692.10.1063/1.1677088Suche in Google Scholar

37. Jomroz, M. H. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 114, 220–230.Suche in Google Scholar

38. Varsanyi, G. Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives; Adam Hilger: Hoboken, New Jersey, Vol. 1–2, 1974.Suche in Google Scholar

39. Molnar, V., Billes, F., Tyihak, E., Mikosch, H. Spectrochim. Acta 2008, 69A, 542558.10.1016/j.saa.2007.05.002Suche in Google Scholar PubMed

40. Kalsi, P. S. Spectroscopy of Organic Compounds; Wiley Eastern Ltd.: New Delhi, 1993.Suche in Google Scholar

41. Usha Rani, A., Sundaraganesan, N., Kurt, M., Cinar, M., Karabacak, M. Spectrochim. Acta 2010, A75, 1523–1529.10.1016/j.saa.2010.02.010Suche in Google Scholar PubMed

42. Karabacak, M., Kurt, M., Cınar, M., Coruh, A. Mol. Phys. 2009, 107, 253–264, https://doi.org/10.1080/00268970902821579.Suche in Google Scholar

43. Sekino, H., Bartlett, R. J. J. Chem. Phys. 1986, 84, 2726–2733, https://doi.org/10.1063/1.450348.Suche in Google Scholar

44. Henriksson, J., Saue, T., Norman, P. J. Chem. Phys. 2008, 128, 024105, https://doi.org/10.1063/1.2816709.Suche in Google Scholar PubMed

45. Santhy, K. R., Daniel Sweetlin, M., Muthu, S., Raja, M., Christina, S. A. Optik 2019, 182, 1211–1227, https://doi.org/10.1016/j.ijleo.2019.02.010.Suche in Google Scholar

46. Spackman, M. A., McKinnon, J. J., Jayatilaka, D. CrystEngComm 2008, 10, 377–388; https://doi.org/10.1039/b704980c.Suche in Google Scholar PubMed

47. Munshi, P., Skelton, B. W., McKinnon, J. J., Spackman, M. A. CrystEngComm 2008, 10, 197–206, https://doi.org/10.1039/b712869j.Suche in Google Scholar

48. Lemmerer, A., Bernstein, J., Spackman, M. A. Chem. Commun. 2012, 48, 1883–1885, https://doi.org/10.1039/c1cc15849j.Suche in Google Scholar PubMed

49. Luo, Y. H., Sun, B. W. Spectrochim. Acta, Part A 2014, 120, 228–236, https://doi.org/10.1016/j.saa.2013.09.144.Suche in Google Scholar PubMed

50. Ari, L., Jussi, M. Chapter 2 – physico-chemical concepts. In Nucleation of Water; Elsevier: Amsterdam Netherlands, 2021.Suche in Google Scholar

51. Praveen, S., Ranjeet, K., Shachi, T., Ranjana, S. K., Ashish, K. T., Hari, D. K. Clin. Med. Biochem. 2015, 1, 1–4.Suche in Google Scholar

52. Xuan, Y. M., Hong, X. Z., Mihaly, M., Meng, C. Curr. Comput.-Aided Drug Des. 2011, 7, 146–157.10.2174/157340911795677602Suche in Google Scholar PubMed PubMed Central

53. Shuker, S. B., Hajduk, P. J., Meadows, R. P., Fesik, S. W. Science 1996, 274, 1531–1534, https://doi.org/10.1126/science.274.5292.1531.Suche in Google Scholar PubMed

54. Ramalingam, A., Sambandam, S., Medimagh, M., Al-Dossary, O., Issaoui, N., Wojcik, M. J. J. King Saud Univ., Sci. 2021, 33, 101632, https://doi.org/10.1016/j.jksus.2021.101632.Suche in Google Scholar

55. Kazachenko, A. S., Issaoui, N., Sagaama, A., Malyar, Y. N., Al-Dossary, O., Bousiakou, L. G., Kazachenko, A. S., Miroshnokova, A. V., Xiang, Z. J. King Saud Univ., Sci. 2022, 34, 102350, https://doi.org/10.1016/j.jksus.2022.102350.Suche in Google Scholar

56. Rekik, N., Issaoui, N., Ghalla, H., Oujia, B., Wójcik, M. J. J. Mol. Struct. 2007, 844, 21–31, https://doi.org/10.1016/j.molstruc.2007.02.040.Suche in Google Scholar

57. Roy, D. R., Parthasarathi, R., Maiti, B., Subramanian, V., Chattaraj, P. K. Bioorg. Med. Chem. 2005, 13, 3405–3412, https://doi.org/10.1016/j.bmc.2005.03.011.Suche in Google Scholar PubMed

58. Parthasarathi, R., Subramanian, V., Roy, D. R., Chattaraj, P. K. Bioorg. Med. Chem. 2004, 12, 5533–5543, https://doi.org/10.1016/j.bmc.2004.08.013.Suche in Google Scholar PubMed

59. Jindal, A., Kapoor, S., Verma, I., Raju, A., Arora, H., Tyagi, P. Polycyclic Aromat. Compd. 2023, 1–16.10.1080/10406638.2023.2169720Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2023-0392).


Received: 2023-10-12
Accepted: 2023-11-08
Published Online: 2023-12-11
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0392/html
Button zum nach oben scrollen