Synthesis, X-ray diffraction, DFT, and molecular docking studies of isonicotinohydrazide derivative
-
Aysha Fatima
, Nazia Siddiqui , Ghazala Khanum , Nazrul Haq , Ray J. Butcher , Sanjay Kumar Srivastavaund Saleem Javed
Abstract
The synthesized compound N′-benzylidene-isonicotinohydrazide (N-BINH), was experimentally characterized using XRD and distinguished by using experimental spectroscopic methods. DFT, B3LYP method along with 6-311++G(d,p) basis set were applied to determine the optimal molecular geometry and vibrational wave numbers. Gauge Independent Atomic Orbital (GIAO) method and DFT were used to calculate the chemical shifts for 13C and 1H NMR in chloroform solvent. MEP analysis reveals that the site with an oxygen atom is the most reactive part of the N-BINH molecule. Computed UV–visible spectrum in MeOH and gas phase was generated by using the TD-DFT technique. The investigation also looked at electron localization function properties. Hirshfeld analysis demonstrates the 3D intermolecular interactions of the crystal surface, while fingerprint plots were used to elucidate the 2D interactions. By calculating the electrophilicity index, it was theoretically shown that the titled molecule could be bioactive. Further, molecular docking analysis was used to investigate the biological activity of the N-BINH with four distinct receptors to assess the finest ligand–protein interactions and similarity to the dynamic constituent.
Acknowledgments
We thank Jiwaji University Gwalior for the infrastructure facility and CIF for spectroscopic measurements and Jamia Millia Islamia, New Delhi for the infra structure and facility.
-
Research ethics: All the research ethics have been followed by the authors.
-
Author contributions: Aysha Fatima: Writing – original draft, Visualization, Investigation; Nazia Siddiqui: Calculations, Visualization, Plotting graphs and editing; Ghazala Khanum: Analysis; Nazrul Haq: Experiment, Writing – review & editing; R. J. Butcher: Data curation, Resources; Sanjay Kumar Srivastava: Experiment, Writing – review & editing; Saleem Javed: Conceptualization, Methodology, Software, Editing, Supervision.
-
Competing interests: Authors state no conflict of interest.
-
Research funding: The authors are thankful to the Researchers Supporting Project number (RSPD2023R1116) at King Saud University, Riyadh, Saudi Arabia for supporting this research.
-
Data availability: The crystal data has been available with the CCDC No. 2106155 at https://www.ccdc.cam.ac.uk/structures/.
References
1. Liu, E., Lia, L., Davis, K., Zhang, G. J. Mol. Struct. 2019, 1188, 1–6, https://doi.org/10.1016/j.molstruc.2019.02.044.Suche in Google Scholar
2. EL-Gammal, O. A., Alshater, H., El-Boraey, H. A. J. Mol. Struct. 2019, 1195, 220–230, https://doi.org/10.1016/j.molstruc.2019.05.101.Suche in Google Scholar
3. Raviglione, M. C., Dy, C., Schmidt, S., Kochi, A. Lancet 1997, 350, 624–629, https://doi.org/10.1016/s0140-6736(97)04146-9.Suche in Google Scholar PubMed
4. Ojha, S., Bapna, A., Talesara, G. L. ARKIVOC 2008, 11, 112–122.10.3998/ark.5550190.0009.b11Suche in Google Scholar
5. Sethuram, M., Rajasekharan, M. V., Dhandapani, M., Amirthaganesan, G., Nizam Mohideen, M. Acta Crystallogr. 2013, E69, o957–o958.10.1107/S1600536813013949Suche in Google Scholar PubMed PubMed Central
6. Torje, I. A., Valean, A.-M., Cristea, C. Rev. Roum. Chim. 2012, 57, 337–344.Suche in Google Scholar
7. Wei, Z., Wang, J., Jiang, X., Li, Y., Chen, G., Xie, Q. Chin. J. Appl. Chem. 2015, 32, 1014–1020.Suche in Google Scholar
8. Cymerman-Craig, J., Willis, D., Rubbo, S. D., Edgar, J. Nature 1995, 176, 34–35, https://doi.org/10.1038/176034a0.Suche in Google Scholar PubMed
9. Zubrys, A., Siebenmann, C. O. Can. J. Chem. 1955, 33, 11–14, https://doi.org/10.1139/v55-003.Suche in Google Scholar
10. Maccari, R., Ottan, R., Vigorita, M. G. Bioorg. Med. Chem. Lett. 2005, 15, 2509–2513, https://doi.org/10.1016/j.bmcl.2005.03.065.Suche in Google Scholar PubMed
11. Lamelas, R., Fernández-Lodeiro, A., Bastida, R., Labisbal, E., Macías, A., Núñez, C., Lodeiro, C., Yáñez, M. Inorg. Chim. Acta 2017, 456, 34–43, https://doi.org/10.1016/j.ica.2016.10.047.Suche in Google Scholar
12. Kakimoto, S., Yashamoto, K. Pharm. Bull. 1956, 4, 4–6, https://doi.org/10.1248/cpb1953.4.4.Suche in Google Scholar PubMed
13. Gallego, M., García Vargas, M., Valcarcel, M. Analyst 1979, 104, 613–619, https://doi.org/10.1039/an9790400613.Suche in Google Scholar
14. Gallego, M., Garcia Vargas, M., Pino, F., Valcarcel, M. Microchem. J. 1978, 23, 353–359, https://doi.org/10.1016/0026-265x(78)90088-7.Suche in Google Scholar
15. Liaw, W., Lee, N., Chen, C., Lee, C., Lee, G., Peng, S. J. Am. Chem. Soc. 2000, 122, 488–494, https://doi.org/10.1021/ja992300q.Suche in Google Scholar
16(a). Sagaama, A., Issaoui, N., Al-Dossary, O., Kazachenko, A. S., Wojcik, M. J. Heliyon 2021, 7, e08204; https://doi.org/10.1016/j.jksus.2021.101606.Suche in Google Scholar
(b) Jomaa, I., Issaoui, N., Roisnel, T., Marouani, H. J. Mol. Struct. 2020, 1213, 128186; https://doi.org/10.1016/j.molstruc.2021.130730.Suche in Google Scholar
17. Rajpure, K. Y., Bhosale, C. H. Sb2S3 semiconductor-septum rechargeable storage cell. Mater. Chem. Phys. 2000, 64, 70–74, https://doi.org/10.1016/s0254-0584(99)00240-0.Suche in Google Scholar
18. Fatima, A., Khanum, G., Agrawal, D. D., Srivastava, S. K., Butcher, R. J., Muthu, S., Ahmad, M., Althubeiti, K., Siddiqui, N., Javed, S. Polycycl. Aromat. Compd. 2023, 43, 4242–4270; https://doi.org/10.1080/10406638.2022.2089174.Suche in Google Scholar
19. Fatima, A., Khanum, G., Verma, I., Butcher, R. J., Siddiqui, N., Srivastava, S. K., Javed, S. Polycycl. Aromat. Compd. 2023, 43, 1644–1675; https://doi.org/10.1080/10406638.2022.2032769.Suche in Google Scholar
20. Fatima, A., Khanum, G., Sharma, A., Verma, I., Arora, H., Siddiqui, N., Javed, S. Polycyclic Aromat. Compd. 2023, 43, 1263–1287, https://doi.org/10.1080/10406638.2022.2026989.Suche in Google Scholar
21. Agarwal, N., Verma, I., Siddiqui, N., Javed, S. J. Mol. Struct. 2021, 1245, 131046, https://doi.org/10.1016/j.molstruc.2021.131046.Suche in Google Scholar
22. Fatima, A., Ghazala, K., Arun, S., Nazia, S., Muthu, S., Butcher, R. J., Srivastava, S. K., Javed, S. J. Mol. Struct. 2022, 1268, 133613, https://doi.org/10.1016/j.molstruc.2022.133613.Suche in Google Scholar
23(a). Fatima, A., Arora, H., Bhattacharya, P., Siddiqui, N., Abualnaja, K. M., Garg, P., Javed, S. J. Mol. Struct. 2023, 1273, 134242, https://doi.org/10.1016/j.molstruc.2022.134242.Suche in Google Scholar
(b) Janani, S., Rajagopal, H., Muthu, S., Javed, S., Irfan, A. J. Indian Chem. Soc. 2022, 99, 100438, https://doi.org/10.1016/j.jics.2022.100438.Suche in Google Scholar
24. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford CT, 2016.Suche in Google Scholar
25. Ayako, N., Yutaka, I., Hiromi, N. J. Chem. Phys. 2006, 125, 064109.Suche in Google Scholar
26. Lutnaes, O. B., Torgeir, A. R., Trygve, H. Magn. Reson. Chem. 2004, 42, S117–S127, https://doi.org/10.1002/mrc.1457.Suche in Google Scholar PubMed
27. Bernhard, S. Geometry optimization. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 01, 790–809.10.1002/wcms.34Suche in Google Scholar
28. Peter, P., Jane, S. M. Molecular electrostatic potentials: significance and applications. In Chemical Reactivity in Confined Systems: Theory, Modelling and Applications; Chattaraj P. K, Chakraborty D., Eds. Wiley Online Library, 2021; pp. 113–134.10.1002/9781119683353.ch7Suche in Google Scholar
29. Levamaki, H., Vitos, L. Electron localization function implementation in the exact muffin-tin orbitals method. Phys. Rev. B 2021, 103, 035118, https://doi.org/10.1103/physrevb.103.035118.Suche in Google Scholar
30. Mark Spackman, A., Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32; https://doi.org/10.1039/b818330a.Suche in Google Scholar
31. Muhammad, A., Khurram, S. M., Muhammad, N. T., Necmi, D., Mavise, Y., Shabbir, M., Saleh, S. A., Hadi, K., Muhammad, U. A. ACS Omega 2021, 6, 22357–22366, https://doi.org/10.1021/acsomega.1c03078.Suche in Google Scholar PubMed PubMed Central
32. Peter, R. S., Michael, J. T., Joshua, J. M., Stephen, K. W., Daniel, J. G., Dylan, J., Mark, A. S. J. Appl. Crystallogr. 2021, 54, 1006–1011, https://doi.org/10.1107/s1600576721002910.Suche in Google Scholar PubMed PubMed Central
33. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605–1612, https://doi.org/10.1002/jcc.20084.Suche in Google Scholar PubMed
34. Origin 8.0; OriginLab Corp: Northampton, MA.Suche in Google Scholar
35. Xu, J., You-Qin, S., Ping, H. Z. Kristallogr. – New Cryst. Struct. 2011, 226, 63–64, https://doi.org/10.1524/ncrs.2011.0031.Suche in Google Scholar
36. Ditchfield, R. J. Chem. Phys. 1972, 56, 5688–5692.10.1063/1.1677088Suche in Google Scholar
37. Jomroz, M. H. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 114, 220–230.Suche in Google Scholar
38. Varsanyi, G. Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives; Adam Hilger: Hoboken, New Jersey, Vol. 1–2, 1974.Suche in Google Scholar
39. Molnar, V., Billes, F., Tyihak, E., Mikosch, H. Spectrochim. Acta 2008, 69A, 542558.10.1016/j.saa.2007.05.002Suche in Google Scholar PubMed
40. Kalsi, P. S. Spectroscopy of Organic Compounds; Wiley Eastern Ltd.: New Delhi, 1993.Suche in Google Scholar
41. Usha Rani, A., Sundaraganesan, N., Kurt, M., Cinar, M., Karabacak, M. Spectrochim. Acta 2010, A75, 1523–1529.10.1016/j.saa.2010.02.010Suche in Google Scholar PubMed
42. Karabacak, M., Kurt, M., Cınar, M., Coruh, A. Mol. Phys. 2009, 107, 253–264, https://doi.org/10.1080/00268970902821579.Suche in Google Scholar
43. Sekino, H., Bartlett, R. J. J. Chem. Phys. 1986, 84, 2726–2733, https://doi.org/10.1063/1.450348.Suche in Google Scholar
44. Henriksson, J., Saue, T., Norman, P. J. Chem. Phys. 2008, 128, 024105, https://doi.org/10.1063/1.2816709.Suche in Google Scholar PubMed
45. Santhy, K. R., Daniel Sweetlin, M., Muthu, S., Raja, M., Christina, S. A. Optik 2019, 182, 1211–1227, https://doi.org/10.1016/j.ijleo.2019.02.010.Suche in Google Scholar
46. Spackman, M. A., McKinnon, J. J., Jayatilaka, D. CrystEngComm 2008, 10, 377–388; https://doi.org/10.1039/b704980c.Suche in Google Scholar PubMed
47. Munshi, P., Skelton, B. W., McKinnon, J. J., Spackman, M. A. CrystEngComm 2008, 10, 197–206, https://doi.org/10.1039/b712869j.Suche in Google Scholar
48. Lemmerer, A., Bernstein, J., Spackman, M. A. Chem. Commun. 2012, 48, 1883–1885, https://doi.org/10.1039/c1cc15849j.Suche in Google Scholar PubMed
49. Luo, Y. H., Sun, B. W. Spectrochim. Acta, Part A 2014, 120, 228–236, https://doi.org/10.1016/j.saa.2013.09.144.Suche in Google Scholar PubMed
50. Ari, L., Jussi, M. Chapter 2 – physico-chemical concepts. In Nucleation of Water; Elsevier: Amsterdam Netherlands, 2021.Suche in Google Scholar
51. Praveen, S., Ranjeet, K., Shachi, T., Ranjana, S. K., Ashish, K. T., Hari, D. K. Clin. Med. Biochem. 2015, 1, 1–4.Suche in Google Scholar
52. Xuan, Y. M., Hong, X. Z., Mihaly, M., Meng, C. Curr. Comput.-Aided Drug Des. 2011, 7, 146–157.10.2174/157340911795677602Suche in Google Scholar PubMed PubMed Central
53. Shuker, S. B., Hajduk, P. J., Meadows, R. P., Fesik, S. W. Science 1996, 274, 1531–1534, https://doi.org/10.1126/science.274.5292.1531.Suche in Google Scholar PubMed
54. Ramalingam, A., Sambandam, S., Medimagh, M., Al-Dossary, O., Issaoui, N., Wojcik, M. J. J. King Saud Univ., Sci. 2021, 33, 101632, https://doi.org/10.1016/j.jksus.2021.101632.Suche in Google Scholar
55. Kazachenko, A. S., Issaoui, N., Sagaama, A., Malyar, Y. N., Al-Dossary, O., Bousiakou, L. G., Kazachenko, A. S., Miroshnokova, A. V., Xiang, Z. J. King Saud Univ., Sci. 2022, 34, 102350, https://doi.org/10.1016/j.jksus.2022.102350.Suche in Google Scholar
56. Rekik, N., Issaoui, N., Ghalla, H., Oujia, B., Wójcik, M. J. J. Mol. Struct. 2007, 844, 21–31, https://doi.org/10.1016/j.molstruc.2007.02.040.Suche in Google Scholar
57. Roy, D. R., Parthasarathi, R., Maiti, B., Subramanian, V., Chattaraj, P. K. Bioorg. Med. Chem. 2005, 13, 3405–3412, https://doi.org/10.1016/j.bmc.2005.03.011.Suche in Google Scholar PubMed
58. Parthasarathi, R., Subramanian, V., Roy, D. R., Chattaraj, P. K. Bioorg. Med. Chem. 2004, 12, 5533–5543, https://doi.org/10.1016/j.bmc.2004.08.013.Suche in Google Scholar PubMed
59. Jindal, A., Kapoor, S., Verma, I., Raju, A., Arora, H., Tyagi, P. Polycyclic Aromat. Compd. 2023, 1–16.10.1080/10406638.2023.2169720Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/zpch-2023-0392).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review Article
- Potential of Gd-based nanocomposites (GdFeO3) as photocatalysts for the degradation of organic pollutants: a review
- Original Papers
- Bimetallic nanoparticles preparation from metallic organic frameworks, characterization and its applications in reclamation of textile effluents
- Chitosan-coated magnetic nanorods and nanospheres: physicochemical characterizations and potential as methotrexate carriers for targeted drug delivery
- Green synthesis of copper nanoparticles from agro-waste garlic husk
- Noncovalent interactions in N-methylurea crystalline hydrates
- Upcycling of the industrial waste as a sustainable source of axenic fungal strain (Aspergillus oryzae) for scale up enzymatic production with kinetic analysis and Box–Behnken design application
- Kinetics and outer sphere electron transfer of some metallosurfactants by Fe(CN)64− in microheterogenous medium: a detailed thermodynamic approach
- Bonding and noncovalent interactions effects in 2,6-dimethylpiperazine-1,4-diium oxalate oxalic acid: DFT calculation, topological analysis, NMR and molecular docking studies
- Effect of ionic strength on DNA–dye interactions of Victoria blue B and methylene green using UV–visible spectroscopy
- Synthesis, X-ray diffraction, DFT, and molecular docking studies of isonicotinohydrazide derivative
Artikel in diesem Heft
- Frontmatter
- Review Article
- Potential of Gd-based nanocomposites (GdFeO3) as photocatalysts for the degradation of organic pollutants: a review
- Original Papers
- Bimetallic nanoparticles preparation from metallic organic frameworks, characterization and its applications in reclamation of textile effluents
- Chitosan-coated magnetic nanorods and nanospheres: physicochemical characterizations and potential as methotrexate carriers for targeted drug delivery
- Green synthesis of copper nanoparticles from agro-waste garlic husk
- Noncovalent interactions in N-methylurea crystalline hydrates
- Upcycling of the industrial waste as a sustainable source of axenic fungal strain (Aspergillus oryzae) for scale up enzymatic production with kinetic analysis and Box–Behnken design application
- Kinetics and outer sphere electron transfer of some metallosurfactants by Fe(CN)64− in microheterogenous medium: a detailed thermodynamic approach
- Bonding and noncovalent interactions effects in 2,6-dimethylpiperazine-1,4-diium oxalate oxalic acid: DFT calculation, topological analysis, NMR and molecular docking studies
- Effect of ionic strength on DNA–dye interactions of Victoria blue B and methylene green using UV–visible spectroscopy
- Synthesis, X-ray diffraction, DFT, and molecular docking studies of isonicotinohydrazide derivative