Startseite Naturwissenschaften Green corrosion inhibitor: Cymbopogon schoenanthus extract in an acid cleaning solution for aluminum brass
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Green corrosion inhibitor: Cymbopogon schoenanthus extract in an acid cleaning solution for aluminum brass

  • Mohamed A. Deyab EMAIL logo und Mohsen Mohammed Al-Qhatani
Veröffentlicht/Copyright: 15. September 2021

Abstract

The purpose of this study was to see if Cymbopogon schoenanthus aerial extract (CSA extract) could reduce the corrosion of aluminum brass in acid cleaning solutions in the distillation plant. For this assessment, measurements of weight loss and polarization technique have all been used. We discovered that at 250 ppm, the efficiency of CSA extract was excellent (97%). Polarization assessments confirmed that the organic compounds in CSA extract were effective mixed-type corrosion inhibitors. HPLC and FTIR analysis were used to explore the key chemical components of CSA extract. CSA extract caused the corrosion process to have a higher energy barrier. Observations of SEM and FT-IR spectra confirmed that CSA extract prevents corrosion attacks at the aluminum brass’s surface.


Corresponding author: Mohamed A. Deyab, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, Egypt, E-mail:

Acknowledgments

Taif University Researchers Supporting Project number (TURSP – 2020/19), Taif University, Saudi Arabia.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Trostmann, O. M. Optimized copper alloy tubing configuration for a multi-stage flash distiller Desalin. Water Treat. 2010, 22, 299–310; https://doi.org/10.5004/dwt.2010.1379.Suche in Google Scholar

2. Gapsari, F., Andoko, Wijaya, H. Metalurgija 2018, 57, 333–336.Suche in Google Scholar

3. Soni, A., Sharma, P., Monika, Dashora, R., Goswami, A. K. Port. Electrochim. Acta 2017, 35, 117–126; https://doi.org/10.4152/pea.201702117.Suche in Google Scholar

4. Ju, H., Kai, Z.-P., Li, Y. Corrosion Sci. 2008, 50, 865–871; https://doi.org/10.1016/j.corsci.2007.10.009.Suche in Google Scholar

5. Behpour, M., Ghoreishi, S. M., Soltani, N., Salavati-Niasari, M., Hamadanian, M., Gandomi, A. Corrosion Sci. 2008, 50, 2172–2181; https://doi.org/10.1016/j.corsci.2008.06.020.Suche in Google Scholar

6. Yan, T., Zhang, S., Feng, L., Qiang, Y., Lu, L., Fu, D., Wen, Y., Chen, J., Li, W., Tan, B. J. Taiwan Inst. Chem. Eng. 2020, 106, 118–129; https://doi.org/10.1016/j.jtice.2019.10.014.Suche in Google Scholar

7. Deyab, M. A., Abd El-Rehim, S. S. Corrosion Sci. 2012, 65, 309–316; https://doi.org/10.1016/j.corsci.2012.08.032.Suche in Google Scholar

8. Park, H., Kim, K. Y., Choi, W. J. Phys. Chem. B 2002, 106, 4775–4781; https://doi.org/10.1021/jp025519r.Suche in Google Scholar

9. Deyab, M. A., Ouarsal, R., Al-Sabagh, A. M., Lachkar, M., El Bali, B. Prog. Org. Coating 2017, 107, 37–42; https://doi.org/10.1016/j.porgcoat.2017.03.014.Suche in Google Scholar

10. Ihara, M., Nishihara, H., Aramaki, K. Corrosion Sci. 1992, 33, 1267–1279; https://doi.org/10.1016/0010-938x(92)90135-p.Suche in Google Scholar

11. Deyab, M. A., El Bali, B., Essehli, R., Ouarsal, R., Lachkar, M., Fuess, H. J. Mol. Liq. 2016, 216, 636–640; https://doi.org/10.1016/j.molliq.2016.01.075.Suche in Google Scholar

12. Ravichandran, R., Nanjundan, S., Rajendran, N. Appl. Surf. Sci. 2004, 236, 241–250; https://doi.org/10.1016/j.apsusc.2004.04.025.Suche in Google Scholar

13. Avoseh, O., Oyedeji, O., Rungqu, P., Nkeh-Chungag, B., Oyedeji, A. Molecules 2015, 20, 7438–7453; https://doi.org/10.3390/molecules20057438.Suche in Google Scholar PubMed PubMed Central

14. ASTM G1-03(2017)e1. Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens; ASTM International: West Conshohocken, PA, 2017. www.astm.org.Suche in Google Scholar

15. Deyab, M. A. J. Mol. Liq. 2018, 255, 550–555; https://doi.org/10.1016/j.molliq.2018.02.019.Suche in Google Scholar

16. Chen, Z., Fadhil, A. A., Chen, T., Khadom, A. A., Fu, C., Fadhil, N. A. J. Mol. Liq. 2021, 332, 115852; https://doi.org/10.1016/j.molliq.2021.115852.Suche in Google Scholar

17. Deyab, M. A. Desalination 2018, 439, 73–79; https://doi.org/10.1016/j.desal.2018.04.005.Suche in Google Scholar

18. Deyab, M. A. J. Solid State Electrochem. 2009, 13, 1737–1742; https://doi.org/10.1007/s10008-009-0848-8.Suche in Google Scholar

19. Deyab, M. A. Electrochim. Acta 2017, 244, 178–183; https://doi.org/10.1016/j.electacta.2017.05.116.Suche in Google Scholar

20. Marsoul, A., Ijjaali, M., Elhajjaji, F., Taleb, M., Salim, R., Boukir, A. Mater. Today Proc. 2020, 27, 3193–3198; https://doi.org/10.1016/j.matpr.2020.04.202.Suche in Google Scholar

21. Shrestha, P. R., Oli, H. B., Thapa, B., Chaudhary, Y., Gupta, D. K., Das, A. K., Nakarmi, K. B., Singh, S., Karki, N., Yadav, A. P. Eng. J. 2019, 23, 205–211; https://doi.org/10.4186/ej.2019.23.4.205.Suche in Google Scholar

22. Miralrio, A., Espinoza Vázquez, A. Processes 2020, 8, 942; https://doi.org/10.3390/pr8080942.Suche in Google Scholar

23. Haldhar, R., Prasad, D., Saxena, A., Singh, P. Mater. Chem. Front. 2018, 2, 1225–1237; https://doi.org/10.1039/c8qm00120k.Suche in Google Scholar

24. Deyab, M. A., Keera, S. T., El Sabagh, S. M. Corrosion Sci. 2011, 53, 2592–2597; https://doi.org/10.1016/j.corsci.2011.04.018.Suche in Google Scholar

25. Krishnaveni, K., Ravichandran, J. Oral Oncol. 2014, 50, 2704–2712; https://doi.org/10.1016/s1003-6326(14)63401-4.Suche in Google Scholar

26. Deyab, M. A., Dief, H. A. A., Eissa, E. A., Taman, A. R. Electrochim. Acta 2007, 52, 8105–8110; https://doi.org/10.1016/j.electacta.2007.07.009.Suche in Google Scholar

27. Chen, S., Chen, S., Zhu, B., Huang, C., Li, W. J. Mol. Liq. 2020, 311, 113312; https://doi.org/10.1016/j.molliq.2020.113312.Suche in Google Scholar

28. Deyab, M. A. J. Power Sources 2018, 390, 176–180; https://doi.org/10.1016/j.jpowsour.2018.04.053.Suche in Google Scholar

29. Musa, A. Y., Kadhum, A. A. H., Mohamad, A. B., Rahoma, A. A. B., Mesmari, H. J. Mol. Struct. 2010, 969, 233; https://doi.org/10.1016/j.molstruc.2010.02.051.Suche in Google Scholar

30. Deyab, M. A. J. Power Sources 2019, 412, 520–526; https://doi.org/10.1016/j.jpowsour.2018.11.086.Suche in Google Scholar

31. Radovanovic, M. B., Tasic, Z. Z., Petrovic Mihajlovic, M. B., Antonijevic, M. M. Adv. Mater. Sci. Eng. 2018, 2018, 9152183; https://doi.org/10.1155/2018/9152183.Suche in Google Scholar

32. Zulfareen, N., Venugopal, T., Kannan, K. Int. J. Corros. 2018, 2018, 9372804; https://doi.org/10.1155/2018/9372804.Suche in Google Scholar

33. Krishnaveni, K., Ravichandran, J. A study on the inhibition of copper corrosion in sulphuric acid by aqueous extract of leaves of Morinda tinctoria. J. Fail. Anal. Prev. 2015, 15, 711–721; https://doi.org/10.1007/s11668-015-0002-0.Suche in Google Scholar

34. Jennane, J., Touhami, M. E., Zehra, S., Chung, I. M., Lgaz, H. J. Electrochem. Sci. Technol. 2019, 10, 257–270.10.33961/jecst.2019.03167Suche in Google Scholar

35. Qin, T. T., Li, J., Luo, H. Q., Li, M., Li, N. B. Corrosion inhibition of copper by 2,5-dimercapto-1,3,4-thiadiazole monolayer in acidic solution. Corrosion Sci. 2011, 53, 1072–1078; https://doi.org/10.1016/j.corsci.2010.12.002.Suche in Google Scholar

36. Zuo, X., Li, W., Luo, W., Zhang, X., Qiang, Y., Zhang, J., Li, H., Tan, B. J. Mol. Liq. 2021, 321, 114914; https://doi.org/10.1016/j.molliq.2020.114914.Suche in Google Scholar

37. Gerengi, H., Uygur, I., Solomon, M., Yildiz, M., Goksu, H. Sustain. Chem. Pharm. 2016, 4, 57–66; https://doi.org/10.1016/j.scp.2016.10.003.Suche in Google Scholar

38. Schmid, G. M., Huang, H. J. Corrosion Sci. 1980, 20, 1041–1057; https://doi.org/10.1016/0010-938x(80)90083-9.Suche in Google Scholar

39. Deyab, M. A., Essehli, R., El Bali, B. RSC Adv. 2015, 5, 48868–48874; https://doi.org/10.1039/c5ra06611e.Suche in Google Scholar

40. Sappani, H. K., Karthikeyan, S. Ind. Eng. Chem. Res. 2014, 53, 3415–3425; https://doi.org/10.1021/ie401956y.Suche in Google Scholar

41. Deyab, M. A., Nada, A. A., Hamdy, A. Prog. Org. Coating 2017, 105, 245–251; https://doi.org/10.1016/j.porgcoat.2016.12.026.Suche in Google Scholar

Received: 2021-05-28
Accepted: 2021-08-28
Published Online: 2021-09-15
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2021-3078/html
Button zum nach oben scrollen