Abstract
The purpose of this study was to see if Cymbopogon schoenanthus aerial extract (CSA extract) could reduce the corrosion of aluminum brass in acid cleaning solutions in the distillation plant. For this assessment, measurements of weight loss and polarization technique have all been used. We discovered that at 250 ppm, the efficiency of CSA extract was excellent (97%). Polarization assessments confirmed that the organic compounds in CSA extract were effective mixed-type corrosion inhibitors. HPLC and FTIR analysis were used to explore the key chemical components of CSA extract. CSA extract caused the corrosion process to have a higher energy barrier. Observations of SEM and FT-IR spectra confirmed that CSA extract prevents corrosion attacks at the aluminum brass’s surface.
Acknowledgments
Taif University Researchers Supporting Project number (TURSP – 2020/19), Taif University, Saudi Arabia.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Trostmann, O. M. Optimized copper alloy tubing configuration for a multi-stage flash distiller Desalin. Water Treat. 2010, 22, 299–310; https://doi.org/10.5004/dwt.2010.1379.Suche in Google Scholar
2. Gapsari, F., Andoko, Wijaya, H. Metalurgija 2018, 57, 333–336.Suche in Google Scholar
3. Soni, A., Sharma, P., Monika, Dashora, R., Goswami, A. K. Port. Electrochim. Acta 2017, 35, 117–126; https://doi.org/10.4152/pea.201702117.Suche in Google Scholar
4. Ju, H., Kai, Z.-P., Li, Y. Corrosion Sci. 2008, 50, 865–871; https://doi.org/10.1016/j.corsci.2007.10.009.Suche in Google Scholar
5. Behpour, M., Ghoreishi, S. M., Soltani, N., Salavati-Niasari, M., Hamadanian, M., Gandomi, A. Corrosion Sci. 2008, 50, 2172–2181; https://doi.org/10.1016/j.corsci.2008.06.020.Suche in Google Scholar
6. Yan, T., Zhang, S., Feng, L., Qiang, Y., Lu, L., Fu, D., Wen, Y., Chen, J., Li, W., Tan, B. J. Taiwan Inst. Chem. Eng. 2020, 106, 118–129; https://doi.org/10.1016/j.jtice.2019.10.014.Suche in Google Scholar
7. Deyab, M. A., Abd El-Rehim, S. S. Corrosion Sci. 2012, 65, 309–316; https://doi.org/10.1016/j.corsci.2012.08.032.Suche in Google Scholar
8. Park, H., Kim, K. Y., Choi, W. J. Phys. Chem. B 2002, 106, 4775–4781; https://doi.org/10.1021/jp025519r.Suche in Google Scholar
9. Deyab, M. A., Ouarsal, R., Al-Sabagh, A. M., Lachkar, M., El Bali, B. Prog. Org. Coating 2017, 107, 37–42; https://doi.org/10.1016/j.porgcoat.2017.03.014.Suche in Google Scholar
10. Ihara, M., Nishihara, H., Aramaki, K. Corrosion Sci. 1992, 33, 1267–1279; https://doi.org/10.1016/0010-938x(92)90135-p.Suche in Google Scholar
11. Deyab, M. A., El Bali, B., Essehli, R., Ouarsal, R., Lachkar, M., Fuess, H. J. Mol. Liq. 2016, 216, 636–640; https://doi.org/10.1016/j.molliq.2016.01.075.Suche in Google Scholar
12. Ravichandran, R., Nanjundan, S., Rajendran, N. Appl. Surf. Sci. 2004, 236, 241–250; https://doi.org/10.1016/j.apsusc.2004.04.025.Suche in Google Scholar
13. Avoseh, O., Oyedeji, O., Rungqu, P., Nkeh-Chungag, B., Oyedeji, A. Molecules 2015, 20, 7438–7453; https://doi.org/10.3390/molecules20057438.Suche in Google Scholar PubMed PubMed Central
14. ASTM G1-03(2017)e1. Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens; ASTM International: West Conshohocken, PA, 2017. www.astm.org.Suche in Google Scholar
15. Deyab, M. A. J. Mol. Liq. 2018, 255, 550–555; https://doi.org/10.1016/j.molliq.2018.02.019.Suche in Google Scholar
16. Chen, Z., Fadhil, A. A., Chen, T., Khadom, A. A., Fu, C., Fadhil, N. A. J. Mol. Liq. 2021, 332, 115852; https://doi.org/10.1016/j.molliq.2021.115852.Suche in Google Scholar
17. Deyab, M. A. Desalination 2018, 439, 73–79; https://doi.org/10.1016/j.desal.2018.04.005.Suche in Google Scholar
18. Deyab, M. A. J. Solid State Electrochem. 2009, 13, 1737–1742; https://doi.org/10.1007/s10008-009-0848-8.Suche in Google Scholar
19. Deyab, M. A. Electrochim. Acta 2017, 244, 178–183; https://doi.org/10.1016/j.electacta.2017.05.116.Suche in Google Scholar
20. Marsoul, A., Ijjaali, M., Elhajjaji, F., Taleb, M., Salim, R., Boukir, A. Mater. Today Proc. 2020, 27, 3193–3198; https://doi.org/10.1016/j.matpr.2020.04.202.Suche in Google Scholar
21. Shrestha, P. R., Oli, H. B., Thapa, B., Chaudhary, Y., Gupta, D. K., Das, A. K., Nakarmi, K. B., Singh, S., Karki, N., Yadav, A. P. Eng. J. 2019, 23, 205–211; https://doi.org/10.4186/ej.2019.23.4.205.Suche in Google Scholar
22. Miralrio, A., Espinoza Vázquez, A. Processes 2020, 8, 942; https://doi.org/10.3390/pr8080942.Suche in Google Scholar
23. Haldhar, R., Prasad, D., Saxena, A., Singh, P. Mater. Chem. Front. 2018, 2, 1225–1237; https://doi.org/10.1039/c8qm00120k.Suche in Google Scholar
24. Deyab, M. A., Keera, S. T., El Sabagh, S. M. Corrosion Sci. 2011, 53, 2592–2597; https://doi.org/10.1016/j.corsci.2011.04.018.Suche in Google Scholar
25. Krishnaveni, K., Ravichandran, J. Oral Oncol. 2014, 50, 2704–2712; https://doi.org/10.1016/s1003-6326(14)63401-4.Suche in Google Scholar
26. Deyab, M. A., Dief, H. A. A., Eissa, E. A., Taman, A. R. Electrochim. Acta 2007, 52, 8105–8110; https://doi.org/10.1016/j.electacta.2007.07.009.Suche in Google Scholar
27. Chen, S., Chen, S., Zhu, B., Huang, C., Li, W. J. Mol. Liq. 2020, 311, 113312; https://doi.org/10.1016/j.molliq.2020.113312.Suche in Google Scholar
28. Deyab, M. A. J. Power Sources 2018, 390, 176–180; https://doi.org/10.1016/j.jpowsour.2018.04.053.Suche in Google Scholar
29. Musa, A. Y., Kadhum, A. A. H., Mohamad, A. B., Rahoma, A. A. B., Mesmari, H. J. Mol. Struct. 2010, 969, 233; https://doi.org/10.1016/j.molstruc.2010.02.051.Suche in Google Scholar
30. Deyab, M. A. J. Power Sources 2019, 412, 520–526; https://doi.org/10.1016/j.jpowsour.2018.11.086.Suche in Google Scholar
31. Radovanovic, M. B., Tasic, Z. Z., Petrovic Mihajlovic, M. B., Antonijevic, M. M. Adv. Mater. Sci. Eng. 2018, 2018, 9152183; https://doi.org/10.1155/2018/9152183.Suche in Google Scholar
32. Zulfareen, N., Venugopal, T., Kannan, K. Int. J. Corros. 2018, 2018, 9372804; https://doi.org/10.1155/2018/9372804.Suche in Google Scholar
33. Krishnaveni, K., Ravichandran, J. A study on the inhibition of copper corrosion in sulphuric acid by aqueous extract of leaves of Morinda tinctoria. J. Fail. Anal. Prev. 2015, 15, 711–721; https://doi.org/10.1007/s11668-015-0002-0.Suche in Google Scholar
34. Jennane, J., Touhami, M. E., Zehra, S., Chung, I. M., Lgaz, H. J. Electrochem. Sci. Technol. 2019, 10, 257–270.10.33961/jecst.2019.03167Suche in Google Scholar
35. Qin, T. T., Li, J., Luo, H. Q., Li, M., Li, N. B. Corrosion inhibition of copper by 2,5-dimercapto-1,3,4-thiadiazole monolayer in acidic solution. Corrosion Sci. 2011, 53, 1072–1078; https://doi.org/10.1016/j.corsci.2010.12.002.Suche in Google Scholar
36. Zuo, X., Li, W., Luo, W., Zhang, X., Qiang, Y., Zhang, J., Li, H., Tan, B. J. Mol. Liq. 2021, 321, 114914; https://doi.org/10.1016/j.molliq.2020.114914.Suche in Google Scholar
37. Gerengi, H., Uygur, I., Solomon, M., Yildiz, M., Goksu, H. Sustain. Chem. Pharm. 2016, 4, 57–66; https://doi.org/10.1016/j.scp.2016.10.003.Suche in Google Scholar
38. Schmid, G. M., Huang, H. J. Corrosion Sci. 1980, 20, 1041–1057; https://doi.org/10.1016/0010-938x(80)90083-9.Suche in Google Scholar
39. Deyab, M. A., Essehli, R., El Bali, B. RSC Adv. 2015, 5, 48868–48874; https://doi.org/10.1039/c5ra06611e.Suche in Google Scholar
40. Sappani, H. K., Karthikeyan, S. Ind. Eng. Chem. Res. 2014, 53, 3415–3425; https://doi.org/10.1021/ie401956y.Suche in Google Scholar
41. Deyab, M. A., Nada, A. A., Hamdy, A. Prog. Org. Coating 2017, 105, 245–251; https://doi.org/10.1016/j.porgcoat.2016.12.026.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Hydrothermal synthesis, characterization and photocatalytic activity of Mg doped MoS2
- Insight role of TiO2 to improve the photocatalytic performance of WO3 nanostructures for the efficient degradation of ciprofloxacin
- Highly photosensitized Mg4 Si6O15 (OH)2·6H2O@guar gum nanofibers for the removal of methylene blue under solar light irradiation
- Swelling and kinetic investigations of basic blue-3 sorption by polyacrylamide/Gum Arabic hybrid hydrogel in aqueous medium
- Green corrosion inhibitor: Cymbopogon schoenanthus extract in an acid cleaning solution for aluminum brass
- Cephradine drug release using electrospun chitosan nanofibers incorporated with halloysite nanoclay
- Exploring the charge injection aptitude in pyrazol and oxazole derivatives by the first-principles approach
- Preparation and characterization of vitamin D microemulsions using two-component surface-active stabilizer system
- Vildagliptin plasticized hydrogel film in the control of ocular inflammation after topical application: study of hydration and erosion behaviour
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Hydrothermal synthesis, characterization and photocatalytic activity of Mg doped MoS2
- Insight role of TiO2 to improve the photocatalytic performance of WO3 nanostructures for the efficient degradation of ciprofloxacin
- Highly photosensitized Mg4 Si6O15 (OH)2·6H2O@guar gum nanofibers for the removal of methylene blue under solar light irradiation
- Swelling and kinetic investigations of basic blue-3 sorption by polyacrylamide/Gum Arabic hybrid hydrogel in aqueous medium
- Green corrosion inhibitor: Cymbopogon schoenanthus extract in an acid cleaning solution for aluminum brass
- Cephradine drug release using electrospun chitosan nanofibers incorporated with halloysite nanoclay
- Exploring the charge injection aptitude in pyrazol and oxazole derivatives by the first-principles approach
- Preparation and characterization of vitamin D microemulsions using two-component surface-active stabilizer system
- Vildagliptin plasticized hydrogel film in the control of ocular inflammation after topical application: study of hydration and erosion behaviour