Hydrothermal synthesis, characterization and photocatalytic activity of Mg doped MoS2
-
Muhammad Iftikhar Khan
, Muhammad Touheed
, Muhammad Sajjad-ul-Hasan , Muhammad Siddique , Syed Awais Rouf , Tanveer Ahmad , Mahvish Fatima , Munawar Iqbal , Maha M. Almoneefund Norah Alwadai
Abstract
In this research work nanoparticles of Mg (0, 1, 2 and 3%) doped MoS2 are prepared by Hydrothermal method at 200 °C for 9 h. Scanning Electron Microscope (SEM) for surface morphology, Fourier Transform Infrared Spectroscopy (FTIR) for structural and chemical bonding and UV-visible spectroscopy for optical properties are used. SEM showed that sheet-like structure has changed into stone-like shaped when Mg has doped into MoS2. From FTIR, Mo–O, Mo=S, and H–O bond peaks are becoming dim and new chemical bonds S=O, Mo=O, Mg–O, CH and OH are forming with the increase of Mg doping. UV-visible spectroscopy showed that MoS2 has an indirect bandgap 2.21 eV. Band gap decreased from 1.84 to 1.82 eV when the Mg doping was increased from 1 to 2%, respectively. As Mg concentration was increased i.e. 3% then band gap increased to 1.88 eV. Photocatalytic activity (PCA) of undoped and Mg doped MoS2 is appraised by degrading rhodamine blue (RhB) and methylene blue (MB) dyes. The results showed that PCA (in presence of visible light) Mg doped MoS2 is greater than pure MoS2 which significantly increased the photocatalytic properties.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Saeed, M., Siddique, M., Usman, M., ul Haq, A., Khan, S. G., Raoof, H. A. Z. Phys. Chem. 2017, 231, 1559–1572; https://doi.org/10.1515/zpch-2016-0921.Suche in Google Scholar
2. Saeed, M., Mansha, A., Hamayun, M., Ahmad, A., Ulhaq, A., Ashfaq, M. Z. Phys. Chem. 2018, 232, 359–371; https://doi.org/10.1515/zpch-2017-1065.Suche in Google Scholar
3. Ata, S., Tabassum, A., Bibi, I., Ghafoor, S., Ahad, A., Bhatti, M. A., Islam, A., Rizvi, H., Iqbal, M. Z. Phys. Chem. 2019, 233, 1377–1409; https://doi.org/10.1515/zpch-2018-1205.Suche in Google Scholar
4. Ata, S., Tabassum, A., Bibi, I., Majid, F., Sultan, M., Ghafoor, S., Bhatti, M. A., Qureshi, N., Iqbal, M. Z. Phys. Chem. 2019, 233, 1377–1409; https://doi.org/10.1515/zpch-2018-1205.Suche in Google Scholar
5. Bibi, I., Hussain, S., Majid, F., Kamal, S., Ata, S., Sultan, M., Din, M. I., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1431–1445; https://doi.org/10.1515/zpch-2018-1162.Suche in Google Scholar
6. Jamil, A., Bokhari, T. H., Iqbal, M., Zuber, M., Bukhari, I. H. Z. Phys. Chem. 2019, 234, 129–143; https://doi.org/10.1515/zpch-2019-0006.Suche in Google Scholar
7. Kamran, U., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1325–1349; https://doi.org/10.1515/zpch-2018-1238.Suche in Google Scholar
8. Majid, F., Malik, A., Ata, S., Hussain, Z., Bibi, I., Iqbal, M., Rafay, M., Rizvi, H. Z. Phys. Chem. 2019, 233, 1215–1231; https://doi.org/10.1515/zpch-2018-1339.Suche in Google Scholar
9. Majid, F., Nazir, A., Ata, S., Bibi, I., Mehmood, H. S., Malik, A., Ali, A., Iqbal, M. Z. Phys. Chem. 2020, 234, 323–353; https://doi.org/10.1515/zpch-2019-1423.Suche in Google Scholar
10. Majid, F., Rauf, J., Ata, S., Bibi, I., Yameen, M., Iqbal, M. Z. Phys. Chem. 2019, 233, 1411–1430; https://doi.org/10.1515/zpch-2018-1305.Suche in Google Scholar
11. Wilson, J. A., Yoffe, A. Adv. Phys. 1969, 18, 193–335; https://doi.org/10.1080/00018736900101307.Suche in Google Scholar
12. Mattheiss, L. Phys. Rev. B 1973, 8, 3719; https://doi.org/10.1103/physrevb.8.3719.Suche in Google Scholar
13. Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., Zhang, S.-C. Nat. Phys. 2009, 5, 438; https://doi.org/10.1038/nphys1270.Suche in Google Scholar
14. Watanabe, K., Taniguchi, T., Kanda, H. Nat. Mater. 2004, 3, 404; https://doi.org/10.1038/nmat1134.Suche in Google Scholar
15. Yoffe, A. D. Adv. Phys. 1993, 42, 173–262; https://doi.org/10.1080/00018739300101484.Suche in Google Scholar
16. Chhowalla, M., Shin, H. S., Eda, G., Li, L.-J., Loh, K. P., Zhang, H. Nat. Chem. 2013, 5, 263; https://doi.org/10.1038/nchem.1589.Suche in Google Scholar
17. Huang, Y., Guo, J., Kang, Y., Ai, Y., Li, C. M. Nanoscale 2015, 7, 19358–19376; https://doi.org/10.1039/c5nr06144j.Suche in Google Scholar
18. Yoon, Y., Ganapathi, K., Salahuddin, S. Nano Lett. 2011, 11, 3768–3773; https://doi.org/10.1021/nl2018178.Suche in Google Scholar
19. Mak, K. F., Lee, C., Hone, J., Shan, J., Heinz, T. F. Phys. Rev. Lett. 2010, 105, 136805; https://doi.org/10.1103/physrevlett.105.136805.Suche in Google Scholar
20. Lee, E. W. Growth and Nb-doping of MoS2 Towards Novel 2D/3D Heterojunction Bipolar Transistors. PhD Thesis, The Ohio State University: USA, 2016.Suche in Google Scholar
21. Stupp, B. C. Thin Solid Films 1981, 84, 257–266; https://doi.org/10.1016/0040-6090(81)90023-7.Suche in Google Scholar
22. Yue, Q., Chang, S., Qin, S., Li, J. Phys. Lett. 2013, 377, 1362–1367; https://doi.org/10.1016/j.physleta.2013.03.034.Suche in Google Scholar
23. Kumar, D. P., Song, M. I., Hong, S., Kim, E. H., Gopannagari, M., Reddy, D. A., Kim, T. K. ACS Sustain. Chem. Eng. 2017, 5, 7651–7658; https://doi.org/10.1021/acssuschemeng.7b00978.Suche in Google Scholar
24. König, A., Koepernik, K., Schuster, R., Kraus, R., Knupfer, M., Büchner, B., Berger, H. Europhys. Lett. 2012, 100, 27002; https://doi.org/10.1209/0295-5075/100/27002.Suche in Google Scholar
25. König, A., Schuster, R., Knupfer, M., Büchner, B., Berger, H. Phys. Rev. B 2013, 87, 195119; https://doi.org/10.1103/physrevb.87.195119.Suche in Google Scholar
26. Zhao, X., Zhang, H., Yan, Y., Cao, J., Li, X., Zhou, S., Peng, Z., Zeng, J. Angew. Chem. Int. Ed. 2017, 56, 328–332; https://doi.org/10.1002/anie.201609080.Suche in Google Scholar PubMed
27. Al Banna, L. S., Salem, N. M., Awwad, A. M. Chem. Int. 2020, 6, 137–143.Suche in Google Scholar
28. Awwad, A. M., Salem, N. M., Aqarbeh, M. M., Abdulaziz, F. M. Chem. Int. 2020, 6, 42–48.Suche in Google Scholar
29. Igwe, O. U., Nwamezie, F. Chem. Int. 2018, 4, 60–66.10.1002/nadc.20184071829Suche in Google Scholar
30. Iqbal, M., Abbas, M., Nisar, J., Nazir, A. Chem. Int. 2019, 5, 1–80.Suche in Google Scholar
31. Alaqarbeh, M. M., Shammout, M. W., Awwad, A. M. Chem. Int. 2020, 6, 49–55.Suche in Google Scholar
32. Alasadi, A. M., Khaili, F. I., Awwad, A. M. Chem. Int. 2019, 5, 258–268.Suche in Google Scholar
33. Ghezali, S., Mahdad-Benzerdjeb, A., Ameri, M., Bouyakoub, A. Z. Chem. Int. 2018, 4, 24–32.Suche in Google Scholar
34. Ibisi, N. E., Asoluka, C. A. Chem. Int. 2018, 4, 52–59; https://doi.org/10.1515/ci-2018-0440.Suche in Google Scholar
35. Minas, F., Chandravanshi, B. S., Leta, S. Chem. Int. 2017, 3, 392–405.Suche in Google Scholar
36. Laissaoui, M., Elbatal, Y., Vioque, I., Manjon, G. Chem. Int. 2017, 3, 442–451; https://doi.org/10.1515/9783035610062-062.Suche in Google Scholar
37. Benabdallah, N. K., Harrache, D., Mir, A., de la Guardia, M., Benhachem, F.-Z. Chem. Int. 2017, 3, 220–231.Suche in Google Scholar
38. Ukpaka, C. Chem. Int. 2016, 3, 8–18.Suche in Google Scholar
39. Mallampati, R., Valiyaveettil, S. RSC Adv. 2012, 2, 9914–9920; https://doi.org/10.1039/c2ra21108d.Suche in Google Scholar
40. Setyono, D., Valiyaveettil, S. ACS Sustain. Chem. Eng. 2014, 2, 2722–2729; https://doi.org/10.1021/sc500458x.Suche in Google Scholar
41. Mallampati, R., Tan, K. S., Valiyaveettil, S. Int. Biodeterior. Biodegrad. 2015, 103, 8–15; https://doi.org/10.1016/j.ibiod.2015.03.027.Suche in Google Scholar
42. Mallampati, R., Xuanjun, L., Adin, A., Valiyaveettil, S. ACS Sustain. Chem. Eng. 2015, 3, 1117–1124; https://doi.org/10.1021/acssuschemeng.5b00207.Suche in Google Scholar
43. Setyono, D., Valiyaveettil, S. J. Hazard Mater. 2016, 302, 120–128; https://doi.org/10.1016/j.jhazmat.2015.09.046.Suche in Google Scholar PubMed
44. Hao, L., Wang, P., Valiyaveettil, S. Sci. Rep. 2017, 7, 42881; https://doi.org/10.1038/srep42881.Suche in Google Scholar PubMed PubMed Central
45. Muralikrishna, S., Manjunath, K., Samrat, D., Reddy, V., Ramakrishnappa, T., Nagaraju, D. H. RSC Adv. 2015, 5, 89389–89396; https://doi.org/10.1039/c5ra18855e.Suche in Google Scholar
46. Nadeem Riaz, K., Yousaf, N., Bilal Tahir, M., Israr, Z., Iqbal, T. Int. J. Energy Res. 2019, 43, 491–499; https://doi.org/10.1002/er.4286.Suche in Google Scholar
47. Rahman, M., Hasnat, M., Sawada, K. J. Sci. Res. 2009, 1, 108–120; https://doi.org/10.4324/9780203883181-12.Suche in Google Scholar
48. Ma, L., Chen, W.-X., Xu, L.-M., Zhou, X.-P., Jin, B. Ceram. Int. 2012, 38, 229–234; https://doi.org/10.1016/j.ceramint.2011.06.056.Suche in Google Scholar
49. Polonskyi, O. Preparation of Nanocomposites of Metal Oxides in Plasma Polymer and Study of Their Properties. PhD Dissertation, Charles Univesity, Czech Republic, 2012.Suche in Google Scholar
50. Tsilomelekis, G., Boghosian, S. J. Phys. Chem. C 2010, 115, 2146–2154; https://doi.org/10.1021/jp1098987.Suche in Google Scholar
51. Nagaraju, G., Tharamani, C., Chandrappa, G., Livage, J. Nanoscale Res. Lett. 2007, 2, 461; https://doi.org/10.1007/s11671-007-9087-z.Suche in Google Scholar PubMed PubMed Central
52. Weber, T., Muijsers, J., van Wolput, J. J. Phys. Chem. 1996, 100, 14144; https://doi.org/10.1021/jp961204y.Suche in Google Scholar
53. Lefèvre, G. Adv. Colloid Interface Sci. 2004, 107, 109–123; https://doi.org/10.1016/j.cis.2003.11.002.Suche in Google Scholar
54. Reddy, K. M., Manorama, S. V., Reddy, A. R. Mater. Chem. Phys. 2003, 78, 239–245; https://doi.org/10.1016/s0254-0584(02)00343-7.Suche in Google Scholar
55. Liu, P., Liu, Y., Ye, W., Ma, J., Gao, D. Nanotechnology 2016, 27, 225403; https://doi.org/10.1088/0957-4484/27/22/225403.Suche in Google Scholar PubMed
56. Sun, Y., Lin, H., Wang, C., Wu, Q., Wang, X., Yang, M. Inorg. Chem. Front. 2018, 5, 145–152; https://doi.org/10.1039/c7qi00491e.Suche in Google Scholar
57. Qureshi, K., Ahmad, M. Z., Bhatti, I. A., Zahid, M., Nisar, J., Iqbal, M. J. Mol. Liq. 2019, 285, 778–789; https://doi.org/10.1016/j.molliq.2019.04.139.Suche in Google Scholar
58. Lv, J., Miao, R., Zhang, M., He, G., Zhao, M., Yu, B., Wang, W., Li, B., Sun, Z. J. Mater. Sci. Mater. Electron. 2018, 29, 16282–16288; https://doi.org/10.1007/s10854-018-9717-5.Suche in Google Scholar
59. Ata, S., Shaheen, I., Ghafoor, S., Sultan, M., Majid, F., Bibi, I., Iqbal, M. Diam. Relat. Mater. 2018, 90, 26–31; https://doi.org/10.1016/j.diamond.2018.09.015.Suche in Google Scholar
60. Ahmad, M., Abbas, G., Haider, R., Jalal, F., Shar, G. A., Soomro, G. A., Qureshi, N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1469–1484; https://doi.org/10.1515/zpch-2018-1201.Suche in Google Scholar
61. Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 361–373; https://doi.org/10.1515/zpch-2019-frontmatter9.Suche in Google Scholar
62. Bhatti, H. N., Iqbal, M., Nazir, A., Ain, H. Z. Phys. Chem. 2019, 34, 1803–1817; https://doi.org/10.1515/zpch-2018-1313.Suche in Google Scholar
63. Habib, A., Bhatti, H. N., Iqbal, M. Z. Phys. Chem. 2019, 34, 201–231; https://doi.org/10.1515/zpch-2019-0001.Suche in Google Scholar
64. Jamil, A., Bokhari, T. H., Iqbal, M., Bhatti, I. A., Zuber, M., Nisar, J., Masood, N. Z. Phys. Chem. 2019, 34, 279–294; https://doi.org/10.1515/zpch-2019-1384.Suche in Google Scholar
65. Nazir, A., Zahra, F., Sabri, M. U., Ghaffar, A., Ather, A. Q., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2019, 35, 265–279; https://doi.org/10.1515/zpch-2019-1455.Suche in Google Scholar
66. Nisar, J., Iqbal, M., Iqbal, M., Shah, A., Akhter, M. S., Khan, R. A., Uddin, I., Shah, L. A., Khan, M. S. Z. Phys. Chem. 2019, 34, 117–128; https://doi.org/10.1515/zpch-2018-1273.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Hydrothermal synthesis, characterization and photocatalytic activity of Mg doped MoS2
- Insight role of TiO2 to improve the photocatalytic performance of WO3 nanostructures for the efficient degradation of ciprofloxacin
- Highly photosensitized Mg4 Si6O15 (OH)2·6H2O@guar gum nanofibers for the removal of methylene blue under solar light irradiation
- Swelling and kinetic investigations of basic blue-3 sorption by polyacrylamide/Gum Arabic hybrid hydrogel in aqueous medium
- Green corrosion inhibitor: Cymbopogon schoenanthus extract in an acid cleaning solution for aluminum brass
- Cephradine drug release using electrospun chitosan nanofibers incorporated with halloysite nanoclay
- Exploring the charge injection aptitude in pyrazol and oxazole derivatives by the first-principles approach
- Preparation and characterization of vitamin D microemulsions using two-component surface-active stabilizer system
- Vildagliptin plasticized hydrogel film in the control of ocular inflammation after topical application: study of hydration and erosion behaviour
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Hydrothermal synthesis, characterization and photocatalytic activity of Mg doped MoS2
- Insight role of TiO2 to improve the photocatalytic performance of WO3 nanostructures for the efficient degradation of ciprofloxacin
- Highly photosensitized Mg4 Si6O15 (OH)2·6H2O@guar gum nanofibers for the removal of methylene blue under solar light irradiation
- Swelling and kinetic investigations of basic blue-3 sorption by polyacrylamide/Gum Arabic hybrid hydrogel in aqueous medium
- Green corrosion inhibitor: Cymbopogon schoenanthus extract in an acid cleaning solution for aluminum brass
- Cephradine drug release using electrospun chitosan nanofibers incorporated with halloysite nanoclay
- Exploring the charge injection aptitude in pyrazol and oxazole derivatives by the first-principles approach
- Preparation and characterization of vitamin D microemulsions using two-component surface-active stabilizer system
- Vildagliptin plasticized hydrogel film in the control of ocular inflammation after topical application: study of hydration and erosion behaviour