Startseite Naturwissenschaften Hydrothermal synthesis, characterization and photocatalytic activity of Mg doped MoS2
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hydrothermal synthesis, characterization and photocatalytic activity of Mg doped MoS2

  • Muhammad Iftikhar Khan EMAIL logo , Muhammad Touheed , Muhammad Sajjad-ul-Hasan , Muhammad Siddique , Syed Awais Rouf , Tanveer Ahmad , Mahvish Fatima , Munawar Iqbal , Maha M. Almoneef EMAIL logo und Norah Alwadai
Veröffentlicht/Copyright: 24. August 2021

Abstract

In this research work nanoparticles of Mg (0, 1, 2 and 3%) doped MoS2 are prepared by Hydrothermal method at 200 °C for 9 h. Scanning Electron Microscope (SEM) for surface morphology, Fourier Transform Infrared Spectroscopy (FTIR) for structural and chemical bonding and UV-visible spectroscopy for optical properties are used. SEM showed that sheet-like structure has changed into stone-like shaped when Mg has doped into MoS2. From FTIR, Mo–O, Mo=S, and H–O bond peaks are becoming dim and new chemical bonds S=O, Mo=O, Mg–O, CH and OH are forming with the increase of Mg doping. UV-visible spectroscopy showed that MoS2 has an indirect bandgap 2.21 eV. Band gap decreased from 1.84 to 1.82 eV when the Mg doping was increased from 1 to 2%, respectively. As Mg concentration was increased i.e. 3% then band gap increased to 1.88 eV. Photocatalytic activity (PCA) of undoped and Mg doped MoS2 is appraised by degrading rhodamine blue (RhB) and methylene blue (MB) dyes. The results showed that PCA (in presence of visible light) Mg doped MoS2 is greater than pure MoS2 which significantly increased the photocatalytic properties.

Keywords: MB; Mg; MoS2 ; PCA; RhB

Corresponding authors: Muhammad Iftikhar Khan, Department of Physics, The University of Lahore, Lahore, 53700, Pakistan, E-mail: ; and Maha M. Almoneef, Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University (PNU), Riyadh 11671, Saudi Arabia, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Saeed, M., Siddique, M., Usman, M., ul Haq, A., Khan, S. G., Raoof, H. A. Z. Phys. Chem. 2017, 231, 1559–1572; https://doi.org/10.1515/zpch-2016-0921.Suche in Google Scholar

2. Saeed, M., Mansha, A., Hamayun, M., Ahmad, A., Ulhaq, A., Ashfaq, M. Z. Phys. Chem. 2018, 232, 359–371; https://doi.org/10.1515/zpch-2017-1065.Suche in Google Scholar

3. Ata, S., Tabassum, A., Bibi, I., Ghafoor, S., Ahad, A., Bhatti, M. A., Islam, A., Rizvi, H., Iqbal, M. Z. Phys. Chem. 2019, 233, 1377–1409; https://doi.org/10.1515/zpch-2018-1205.Suche in Google Scholar

4. Ata, S., Tabassum, A., Bibi, I., Majid, F., Sultan, M., Ghafoor, S., Bhatti, M. A., Qureshi, N., Iqbal, M. Z. Phys. Chem. 2019, 233, 1377–1409; https://doi.org/10.1515/zpch-2018-1205.Suche in Google Scholar

5. Bibi, I., Hussain, S., Majid, F., Kamal, S., Ata, S., Sultan, M., Din, M. I., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1431–1445; https://doi.org/10.1515/zpch-2018-1162.Suche in Google Scholar

6. Jamil, A., Bokhari, T. H., Iqbal, M., Zuber, M., Bukhari, I. H. Z. Phys. Chem. 2019, 234, 129–143; https://doi.org/10.1515/zpch-2019-0006.Suche in Google Scholar

7. Kamran, U., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1325–1349; https://doi.org/10.1515/zpch-2018-1238.Suche in Google Scholar

8. Majid, F., Malik, A., Ata, S., Hussain, Z., Bibi, I., Iqbal, M., Rafay, M., Rizvi, H. Z. Phys. Chem. 2019, 233, 1215–1231; https://doi.org/10.1515/zpch-2018-1339.Suche in Google Scholar

9. Majid, F., Nazir, A., Ata, S., Bibi, I., Mehmood, H. S., Malik, A., Ali, A., Iqbal, M. Z. Phys. Chem. 2020, 234, 323–353; https://doi.org/10.1515/zpch-2019-1423.Suche in Google Scholar

10. Majid, F., Rauf, J., Ata, S., Bibi, I., Yameen, M., Iqbal, M. Z. Phys. Chem. 2019, 233, 1411–1430; https://doi.org/10.1515/zpch-2018-1305.Suche in Google Scholar

11. Wilson, J. A., Yoffe, A. Adv. Phys. 1969, 18, 193–335; https://doi.org/10.1080/00018736900101307.Suche in Google Scholar

12. Mattheiss, L. Phys. Rev. B 1973, 8, 3719; https://doi.org/10.1103/physrevb.8.3719.Suche in Google Scholar

13. Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., Zhang, S.-C. Nat. Phys. 2009, 5, 438; https://doi.org/10.1038/nphys1270.Suche in Google Scholar

14. Watanabe, K., Taniguchi, T., Kanda, H. Nat. Mater. 2004, 3, 404; https://doi.org/10.1038/nmat1134.Suche in Google Scholar

15. Yoffe, A. D. Adv. Phys. 1993, 42, 173–262; https://doi.org/10.1080/00018739300101484.Suche in Google Scholar

16. Chhowalla, M., Shin, H. S., Eda, G., Li, L.-J., Loh, K. P., Zhang, H. Nat. Chem. 2013, 5, 263; https://doi.org/10.1038/nchem.1589.Suche in Google Scholar

17. Huang, Y., Guo, J., Kang, Y., Ai, Y., Li, C. M. Nanoscale 2015, 7, 19358–19376; https://doi.org/10.1039/c5nr06144j.Suche in Google Scholar

18. Yoon, Y., Ganapathi, K., Salahuddin, S. Nano Lett. 2011, 11, 3768–3773; https://doi.org/10.1021/nl2018178.Suche in Google Scholar

19. Mak, K. F., Lee, C., Hone, J., Shan, J., Heinz, T. F. Phys. Rev. Lett. 2010, 105, 136805; https://doi.org/10.1103/physrevlett.105.136805.Suche in Google Scholar

20. Lee, E. W. Growth and Nb-doping of MoS2 Towards Novel 2D/3D Heterojunction Bipolar Transistors. PhD Thesis, The Ohio State University: USA, 2016.Suche in Google Scholar

21. Stupp, B. C. Thin Solid Films 1981, 84, 257–266; https://doi.org/10.1016/0040-6090(81)90023-7.Suche in Google Scholar

22. Yue, Q., Chang, S., Qin, S., Li, J. Phys. Lett. 2013, 377, 1362–1367; https://doi.org/10.1016/j.physleta.2013.03.034.Suche in Google Scholar

23. Kumar, D. P., Song, M. I., Hong, S., Kim, E. H., Gopannagari, M., Reddy, D. A., Kim, T. K. ACS Sustain. Chem. Eng. 2017, 5, 7651–7658; https://doi.org/10.1021/acssuschemeng.7b00978.Suche in Google Scholar

24. König, A., Koepernik, K., Schuster, R., Kraus, R., Knupfer, M., Büchner, B., Berger, H. Europhys. Lett. 2012, 100, 27002; https://doi.org/10.1209/0295-5075/100/27002.Suche in Google Scholar

25. König, A., Schuster, R., Knupfer, M., Büchner, B., Berger, H. Phys. Rev. B 2013, 87, 195119; https://doi.org/10.1103/physrevb.87.195119.Suche in Google Scholar

26. Zhao, X., Zhang, H., Yan, Y., Cao, J., Li, X., Zhou, S., Peng, Z., Zeng, J. Angew. Chem. Int. Ed. 2017, 56, 328–332; https://doi.org/10.1002/anie.201609080.Suche in Google Scholar PubMed

27. Al Banna, L. S., Salem, N. M., Awwad, A. M. Chem. Int. 2020, 6, 137–143.Suche in Google Scholar

28. Awwad, A. M., Salem, N. M., Aqarbeh, M. M., Abdulaziz, F. M. Chem. Int. 2020, 6, 42–48.Suche in Google Scholar

29. Igwe, O. U., Nwamezie, F. Chem. Int. 2018, 4, 60–66.10.1002/nadc.20184071829Suche in Google Scholar

30. Iqbal, M., Abbas, M., Nisar, J., Nazir, A. Chem. Int. 2019, 5, 1–80.Suche in Google Scholar

31. Alaqarbeh, M. M., Shammout, M. W., Awwad, A. M. Chem. Int. 2020, 6, 49–55.Suche in Google Scholar

32. Alasadi, A. M., Khaili, F. I., Awwad, A. M. Chem. Int. 2019, 5, 258–268.Suche in Google Scholar

33. Ghezali, S., Mahdad-Benzerdjeb, A., Ameri, M., Bouyakoub, A. Z. Chem. Int. 2018, 4, 24–32.Suche in Google Scholar

34. Ibisi, N. E., Asoluka, C. A. Chem. Int. 2018, 4, 52–59; https://doi.org/10.1515/ci-2018-0440.Suche in Google Scholar

35. Minas, F., Chandravanshi, B. S., Leta, S. Chem. Int. 2017, 3, 392–405.Suche in Google Scholar

36. Laissaoui, M., Elbatal, Y., Vioque, I., Manjon, G. Chem. Int. 2017, 3, 442–451; https://doi.org/10.1515/9783035610062-062.Suche in Google Scholar

37. Benabdallah, N. K., Harrache, D., Mir, A., de la Guardia, M., Benhachem, F.-Z. Chem. Int. 2017, 3, 220–231.Suche in Google Scholar

38. Ukpaka, C. Chem. Int. 2016, 3, 8–18.Suche in Google Scholar

39. Mallampati, R., Valiyaveettil, S. RSC Adv. 2012, 2, 9914–9920; https://doi.org/10.1039/c2ra21108d.Suche in Google Scholar

40. Setyono, D., Valiyaveettil, S. ACS Sustain. Chem. Eng. 2014, 2, 2722–2729; https://doi.org/10.1021/sc500458x.Suche in Google Scholar

41. Mallampati, R., Tan, K. S., Valiyaveettil, S. Int. Biodeterior. Biodegrad. 2015, 103, 8–15; https://doi.org/10.1016/j.ibiod.2015.03.027.Suche in Google Scholar

42. Mallampati, R., Xuanjun, L., Adin, A., Valiyaveettil, S. ACS Sustain. Chem. Eng. 2015, 3, 1117–1124; https://doi.org/10.1021/acssuschemeng.5b00207.Suche in Google Scholar

43. Setyono, D., Valiyaveettil, S. J. Hazard Mater. 2016, 302, 120–128; https://doi.org/10.1016/j.jhazmat.2015.09.046.Suche in Google Scholar PubMed

44. Hao, L., Wang, P., Valiyaveettil, S. Sci. Rep. 2017, 7, 42881; https://doi.org/10.1038/srep42881.Suche in Google Scholar PubMed PubMed Central

45. Muralikrishna, S., Manjunath, K., Samrat, D., Reddy, V., Ramakrishnappa, T., Nagaraju, D. H. RSC Adv. 2015, 5, 89389–89396; https://doi.org/10.1039/c5ra18855e.Suche in Google Scholar

46. Nadeem Riaz, K., Yousaf, N., Bilal Tahir, M., Israr, Z., Iqbal, T. Int. J. Energy Res. 2019, 43, 491–499; https://doi.org/10.1002/er.4286.Suche in Google Scholar

47. Rahman, M., Hasnat, M., Sawada, K. J. Sci. Res. 2009, 1, 108–120; https://doi.org/10.4324/9780203883181-12.Suche in Google Scholar

48. Ma, L., Chen, W.-X., Xu, L.-M., Zhou, X.-P., Jin, B. Ceram. Int. 2012, 38, 229–234; https://doi.org/10.1016/j.ceramint.2011.06.056.Suche in Google Scholar

49. Polonskyi, O. Preparation of Nanocomposites of Metal Oxides in Plasma Polymer and Study of Their Properties. PhD Dissertation, Charles Univesity, Czech Republic, 2012.Suche in Google Scholar

50. Tsilomelekis, G., Boghosian, S. J. Phys. Chem. C 2010, 115, 2146–2154; https://doi.org/10.1021/jp1098987.Suche in Google Scholar

51. Nagaraju, G., Tharamani, C., Chandrappa, G., Livage, J. Nanoscale Res. Lett. 2007, 2, 461; https://doi.org/10.1007/s11671-007-9087-z.Suche in Google Scholar PubMed PubMed Central

52. Weber, T., Muijsers, J., van Wolput, J. J. Phys. Chem. 1996, 100, 14144; https://doi.org/10.1021/jp961204y.Suche in Google Scholar

53. Lefèvre, G. Adv. Colloid Interface Sci. 2004, 107, 109–123; https://doi.org/10.1016/j.cis.2003.11.002.Suche in Google Scholar

54. Reddy, K. M., Manorama, S. V., Reddy, A. R. Mater. Chem. Phys. 2003, 78, 239–245; https://doi.org/10.1016/s0254-0584(02)00343-7.Suche in Google Scholar

55. Liu, P., Liu, Y., Ye, W., Ma, J., Gao, D. Nanotechnology 2016, 27, 225403; https://doi.org/10.1088/0957-4484/27/22/225403.Suche in Google Scholar PubMed

56. Sun, Y., Lin, H., Wang, C., Wu, Q., Wang, X., Yang, M. Inorg. Chem. Front. 2018, 5, 145–152; https://doi.org/10.1039/c7qi00491e.Suche in Google Scholar

57. Qureshi, K., Ahmad, M. Z., Bhatti, I. A., Zahid, M., Nisar, J., Iqbal, M. J. Mol. Liq. 2019, 285, 778–789; https://doi.org/10.1016/j.molliq.2019.04.139.Suche in Google Scholar

58. Lv, J., Miao, R., Zhang, M., He, G., Zhao, M., Yu, B., Wang, W., Li, B., Sun, Z. J. Mater. Sci. Mater. Electron. 2018, 29, 16282–16288; https://doi.org/10.1007/s10854-018-9717-5.Suche in Google Scholar

59. Ata, S., Shaheen, I., Ghafoor, S., Sultan, M., Majid, F., Bibi, I., Iqbal, M. Diam. Relat. Mater. 2018, 90, 26–31; https://doi.org/10.1016/j.diamond.2018.09.015.Suche in Google Scholar

60. Ahmad, M., Abbas, G., Haider, R., Jalal, F., Shar, G. A., Soomro, G. A., Qureshi, N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1469–1484; https://doi.org/10.1515/zpch-2018-1201.Suche in Google Scholar

61. Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 361–373; https://doi.org/10.1515/zpch-2019-frontmatter9.Suche in Google Scholar

62. Bhatti, H. N., Iqbal, M., Nazir, A., Ain, H. Z. Phys. Chem. 2019, 34, 1803–1817; https://doi.org/10.1515/zpch-2018-1313.Suche in Google Scholar

63. Habib, A., Bhatti, H. N., Iqbal, M. Z. Phys. Chem. 2019, 34, 201–231; https://doi.org/10.1515/zpch-2019-0001.Suche in Google Scholar

64. Jamil, A., Bokhari, T. H., Iqbal, M., Bhatti, I. A., Zuber, M., Nisar, J., Masood, N. Z. Phys. Chem. 2019, 34, 279–294; https://doi.org/10.1515/zpch-2019-1384.Suche in Google Scholar

65. Nazir, A., Zahra, F., Sabri, M. U., Ghaffar, A., Ather, A. Q., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2019, 35, 265–279; https://doi.org/10.1515/zpch-2019-1455.Suche in Google Scholar

66. Nisar, J., Iqbal, M., Iqbal, M., Shah, A., Akhter, M. S., Khan, R. A., Uddin, I., Shah, L. A., Khan, M. S. Z. Phys. Chem. 2019, 34, 117–128; https://doi.org/10.1515/zpch-2018-1273.Suche in Google Scholar

Received: 2020-02-03
Accepted: 2021-07-20
Published Online: 2021-08-24
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2020-1635/html
Button zum nach oben scrollen