Cephradine drug release using electrospun chitosan nanofibers incorporated with halloysite nanoclay
-
Mahwish Naz
, Muhammad Rizwan , Sehrish Jabeen , Abdul Ghaffar , Atif Islam , Nafisa Gull , Atta Rasool , Rafi Ullah Khan , Samar Z. Alshawwa und Munawar Iqbal
Abstract
The chitosan/polyvinyl alcohol/halloysite nanoclay (CS/PVA/HNC) loaded with cephradine drug electrospun nanofibers (NFs) were fabricated and characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) techniques. FTIR analysis confirmed the hydrogen bonding between the polymer chain and the developed siloxane linkages. SEM analysis revealed the formation of uniform NFs having beads free and smooth surface with an average diameter in 50–200 nm range. The thermal stability of the NFs was increased by increasing the HNC concentration. The antimicrobial activity was examined against Escherichia coli and staphylococcus strains and the NFs revealed auspicious antimicrobial potential. The drug release was studied at pH 7.4 (in PBS) at 37 °C. The drug release analysis showed that 90% of the drug was released from NFs in 2 h and 40 min. Hence, the prepared NFs could be used as a potential drug carrier and release in a control manner for biomedical application.
Funding source: Princess Nourah bint Abdulrahman University
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Shaheen, M., Bhatti, I. A., Ashar, A., Mohsin, M., Nisar, J., Almoneef, M. M., Iqbal, M. Z. Phys. Chem. 2021, 235, 1395, https://doi.org/10.1515/zpch-2020-1741.Suche in Google Scholar
2. Samarth, N. B., Kamble, V., Mahanwar, P., Rane, A., Abitha, V. Chem. Int. 2015, 4, 202.Suche in Google Scholar
3. Majid, F., Shahin, A., Ata, S., Bibi, I., Malik, A., Ali, A., Laref, A., Iqbal, M., Nazir, A. Z. Phys. Chem. 2021, 235, 1279, https://doi.org/10.1515/zpch-2020-1751.Suche in Google Scholar
4. Nisar, J., Iqbal, M., Iqbal, M., Shah, A., Akhter, M. S., Khan, R. A., Uddin, I., Shah, L. A., Khan, M. S. Z. Phys. Chem. 2020, 234, 117; https://doi.org/10.1515/zpch-2018-1273.Suche in Google Scholar
5. Boukhouya, I., Bakouri, H., Abdelmalek, I., Amrane, M., Guemra, K. Chem. Int. 2018, 4, 120–129.Suche in Google Scholar
6. Nazir, A., Khalid, F., ur Rehman, S., Sarwar, M., Iqbal, M., Yaseen, M., Khan, M. I., Abbas, M. Z. Phys. Chem. 2021, 235, 769, https://doi.org/10.1515/zpc-2019-1558.Suche in Google Scholar
7. Majid, F., Nazir, A., Ata, S., Bibi, I., Mehmood, H. S., Malik, A., Ali, A., Iqbal, M. Z. Phys. Chem. 2020, 234, 323; https://doi.org/10.1515/zpch-2019-1423.Suche in Google Scholar
8. Iqbal, M., Shar, G. A., Ibrahim, S. M., Iftikhar, S., Asif, M., Khan, M. I., Kusuma, H. S., Yaseen, M., Nazir, A. Z. Phys. Chem. 2021, 235, 1209, https://doi.org/10.1515/zpch-2019-1562.Suche in Google Scholar
9. Bibi, I., Hussain, S., Majid, F., Kamal, S., Ata, S., Sultan, M., Din, M. I., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1431; https://doi.org/10.1515/zpch-2018-1162.Suche in Google Scholar
10. Zhu, J., Watts, D., Kotov, N. A. Z. Phys. Chem. 2018, 232, 1383; https://doi.org/10.1515/zpch-2018-1169.Suche in Google Scholar
11. Stellmach, D., Xi, F., Bloeck, U., Bogdanoff, P., Fiechter, S. Z. Phys. Chem. 2020, 234, 1021; https://doi.org/10.1515/zpch-2019-1490.Suche in Google Scholar
12. Khan, H. U., Jan, M. T., Iqbal, M., Shah, M., Ullah, I., Khan, J., Mahmood, K., Niaz, A., Tariq, M. Z. Phys. Chem. 2020, 234, 27; https://doi.org/10.1515/zpch-2018-1302.Suche in Google Scholar
13. Parameswaran, V., Nallamuthu, N., Devendran, P., Nagarajan, E., Manikandan, A. Phys. B Condens. Matter 2017, 515, 89; https://doi.org/10.1016/j.physb.2017.03.043.Suche in Google Scholar
14. Baptista, A. C., Ferreira, I. M. M., Borges, J. P. M. R. J. Compos. Biodegrad. Polym. 2013, 1, 56; https://doi.org/10.12974/2311-8717.2013.01.01.7.Suche in Google Scholar
15. Hu, J., Zeng, F., Wei, J., Chen, Y., Chen, Y. J. Biomater. Sci. Polym. Ed. 2014, 25, 257; https://doi.org/10.1080/09205063.2013.852367.Suche in Google Scholar PubMed
16. Alam, S., Khan, L., Shah, L. A., Noor-ul-Amin, Rehman, N., Najeeb-ur-Rehman. Z. Phys. Chem. 2021, 235, 707; https://doi.org/10.1515/zpch-2020-1631.Suche in Google Scholar
17. Irfan, M., Khan, M., Rehman, T. U., Ali, I., Shah, L. A., Khattak, N. S., Khan, M. S. Z. Phys. Chem. 2021, 235, 609; https://doi.org/10.1515/zpch-2019-1574.Suche in Google Scholar
18. Frombach, J., Lohan, S. B., Lemm, D., Gruner, P., Hasler, J., Ahlberg, S., Blume-Peytavi, U., Unbehauen, M., Haag, R., Meinke, M. C., Vogt, A. Z. Phys. Chem. 2018, 232, 919; https://doi.org/10.1515/zpch-2017-1048.Suche in Google Scholar
19. Iqbal, M., Khera, R. A. Chem. Int. 2015, 1, 17.10.1111/misr.12201Suche in Google Scholar
20. Jaganathan, S. K., Mani, M. P., Khudzari, A. Z. M., Ismail, A. F., Manikandan, A., Rathanasamy, R. Int. J. Polym. Anal. Char. 2019, 24, 696; https://doi.org/10.1080/1023666x.2019.1662590.Suche in Google Scholar
21. Gunn, J., Zhang, M. Trends Biotechnol. 2010, 28, 189; https://doi.org/10.1016/j.tibtech.2009.12.006.Suche in Google Scholar PubMed
22. Remya, V., Patil, D., Abitha, V., Rane, A. V., Mishra, R. K. Chem. Int. 2016, 2, 158.Suche in Google Scholar
23. Jaganathan, S. K., Mani, M. P., Nageswaran, G., Krishnasamy, N. P., Manikandan, A. Int. J. Polym. Anal. Char. 2019, 24, 204; https://doi.org/10.1080/1023666x.2018.1564127.Suche in Google Scholar
24. Jaganathan, S. K., Mani, M. P., Manikandan, A., Rathanasamy, R. Polym. Test. 2019, 78, 105955; https://doi.org/10.1016/j.polymertesting.2019.105955.Suche in Google Scholar
25. Rizwan, M., Yahya, R., Hassan, A., Yar, M., Anita Omar, R., Azari, P., Danial Azzahari, A., Selvanathan, V., Rageh Al-Maleki, A., Venkatraman, G. J. Appl. Polym. Sci. 2018, 135, 45905; https://doi.org/10.1002/app.45905.Suche in Google Scholar
26. Rizwan, M., Yahya, R., Hassan, A., Yar, M., Azzahari, A. D., Selvanathan, V., Sonsudin, F., Abouloula, C. N. Polymers 2017, 9, 137; https://doi.org/10.3390/polym9040137.Suche in Google Scholar PubMed PubMed Central
27. Lokman, N. F., Bakar, A. A. A., Suja, F., Abdullah, H., Rahman, W. B. W. A., Huang, N.-M., Yaacob, M. H. Sensor. Actuator. B 2014, 195, 459; https://doi.org/10.1016/j.snb.2014.01.074.Suche in Google Scholar
28. Rizwan, M., Ganjkhani, Y., Farzam Rad, V., Bazzar, M., Yar, M., Yahya, R., Moradi, A.-R. Surf. Interface Anal. 2020, 52, 132; https://doi.org/10.1002/sia.6731.Suche in Google Scholar
29. Iqbal, D. N., Ehtisham-ul-Haque, S., Ahmad, S., Arif, K., Hussain, E. A., Iqbal, M., Alshawa, S. Z., Abbas, M., Amjed, N., Nazir, A. Arab. J. Chem. 2021, 14, 103156; https://doi.org/10.1016/j.arabjc.2021.103156.Suche in Google Scholar
30. Iqbal, D. N., Shafiq, S., Khan, S. M., Ibrahim, S. M., Abubshait, S. A., Nazir, A., Abbas, M., Iqbal, M. Int. J. Biol. Macromol. 2020, 164, 499; https://doi.org/10.1016/j.ijbiomac.2020.07.139.Suche in Google Scholar PubMed
31. Sundaramahalingam, K., Nallamuthu, N., Manikandan, A., Vanitha, D. Phys. B Condens. Matter 2018, 547, 55; https://doi.org/10.1016/j.physb.2018.08.002.Suche in Google Scholar
32. Parameswaran, V., Nallamuthu, N., Devendran, P., Manikandan, A., Nagarajan, E. J. Nanosci. Nanotechnol. 2018, 18, 3944; https://doi.org/10.1166/jnn.2018.15040.Suche in Google Scholar PubMed
33. Lvov, Y. M., DeVilliers, M. M., Fakhrullin, R. F. Expet Opin. Drug Deliv. 2016, 13, 977; https://doi.org/10.1517/17425247.2016.1169271.Suche in Google Scholar PubMed
34. Awwad, A. M., Salem, N. M., Amer, M. W., Shammout, M. W. Chem. Int. 2021, 7, 139.Suche in Google Scholar
35. Awwad, A. M., Amer, M. W., Al-Aqarbeh, M. M. Chem. Int. 2020, 6, 168.Suche in Google Scholar
36. Jennifer, E. C., Ifedi, O. P. Chem. Int. 2019, 5, 269.Suche in Google Scholar
37. Chikwe, T. N., Ekpo, R. E., Okoye, I. Chem. Int. 2018, 4, 230.Suche in Google Scholar
38. Sasmaz, B., Sasmaz, A., Hein, J. R. Ore Geol. Rev. 2021, 128, 103910; https://doi.org/10.1016/j.oregeorev.2020.103910.Suche in Google Scholar
39. Sasmaz, A., Zagnitko, V. M., Sasmaz, B. Ore Geol. Rev. 2020, 126, 103772; https://doi.org/10.1016/j.oregeorev.2020.103772.Suche in Google Scholar
40. Sasmaz, A., Kryuchenko, N., Zhovinsky, E., Suyarko, V., Konakci, N., Akgul, B. Ore Geol. Rev. 2018, 102, 338; https://doi.org/10.1016/j.oregeorev.2018.09.014.Suche in Google Scholar
41. Daud, H., Ghani, A., Iqbal, D. N., Ahmad, N., Nazir, S., Muhammad, M. J., Hussain, E. A., Nazir, A., Iqbal, M. Arab. J. Chem. 2021, 14, 103111; https://doi.org/10.1016/j.arabjc.2021.103111.Suche in Google Scholar
42. Butt, A., Jabeen, S., Nisar, N., Islam, A., Gull, N., Iqbal, S. S., Khan, S. M., Yameen, B. Int. J. Biol. Macromol. 2019, 121, 104; https://doi.org/10.1016/j.ijbiomac.2018.10.018.Suche in Google Scholar PubMed
43. Rasool, A., Ata, S., Islam, A., Khan, R. U. RSC Adv. 2019, 9, 12282; https://doi.org/10.1039/c9ra02130b.Suche in Google Scholar PubMed PubMed Central
44. Sher, M., Basharat, B., Hassan, F., Naeem-ul-Hassan, M., Bukhari, S. N. A., Hussain, M. A. Bioinspired, Biomimetic Nanobiomaterials 2019, 8, 206; https://doi.org/10.1680/jbibn.18.00049.Suche in Google Scholar
45. Ata, S., Rasool, A., Islam, A., Bibi, I., Rizwan, M., Azeem, M. K., Qureshi, A. U. R., Iqbal, M. Int. J. Biol. Macromol. 2020, 155, 1236; https://doi.org/10.1016/j.ijbiomac.2019.11.091.Suche in Google Scholar PubMed
46. Rasool, A., Ata, S., Islam, A., Rizwan, M., Azeem, M. K., Mehmood, A., Khan, R. U., Qureshi, A. U. R., Mahmood, H. A. Int. J. Biol. Macromol. 2020, 147, 67; https://doi.org/10.1016/j.ijbiomac.2020.01.073.Suche in Google Scholar PubMed
47. Amer, M. W., Awwad, A. M. Chem. Int. 2021, 7, 1.Suche in Google Scholar
48. Awwad, A. M., Salem, N. M., Aqarbeh, M. M., Abdulaziz, F. M. Chem. Int. 2020, 6, 42.Suche in Google Scholar
49. Islam, A., Riaz, M., Yasin, T. Int. J. Biol. Macromol. 2013, 59, 119; https://doi.org/10.1016/j.ijbiomac.2013.04.044.Suche in Google Scholar PubMed
50. Liu, M., Wu, C., Jiao, Y., Xiong, S., Zhou, C. J. Mater. Chem. B 2013, 1, 2078; https://doi.org/10.1039/c3tb20084a.Suche in Google Scholar PubMed
51. Lee, I. W., Li, J., Chen, X., Park, H. J. J. Appl. Polym. 2016, 133, 42900; https://doi.org/10.1002/app.42900.Suche in Google Scholar
52. Awwad, A. M., Amer, M. W. Chem. Int. 2020, 6, 210; https://doi.org/10.1016/j.chempr.2020.08.019.Suche in Google Scholar
53. Al Banna, L. S., Salem, N. M., Jaleel, G. A., Awwad, A. M. Chem. Int. 2020, 6, 137.Suche in Google Scholar
54. Hafeez, S., Islam, A., Gull, N., Ali, A., Khan, S. M., Zia, S., Anwar, K., Khan, S. U., Jamil, T. Int. J. Biol. Macromol. 2018, 114, 890; https://doi.org/10.1016/j.ijbiomac.2018.02.107.Suche in Google Scholar PubMed
55. Morrison, K. D., Misra, R., Williams, L. B. Sci. Rep. 2016, 6, 19043; https://doi.org/10.1038/srep19043.Suche in Google Scholar PubMed PubMed Central
56. Awwad, A. M., Amer, M. W., Salem, N. M., Abdeen, A. O. Chem. Int. 2020, 6, 151.Suche in Google Scholar
57. Nageh, H., Ezzat, M., Ghanim, M., Hassanin, A., El-Moneim, A. UK J. Pharmaceut. Biosci. 2014, 2, 1; https://doi.org/10.20510/ukjpb/2/i3/91158.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Hydrothermal synthesis, characterization and photocatalytic activity of Mg doped MoS2
- Insight role of TiO2 to improve the photocatalytic performance of WO3 nanostructures for the efficient degradation of ciprofloxacin
- Highly photosensitized Mg4 Si6O15 (OH)2·6H2O@guar gum nanofibers for the removal of methylene blue under solar light irradiation
- Swelling and kinetic investigations of basic blue-3 sorption by polyacrylamide/Gum Arabic hybrid hydrogel in aqueous medium
- Green corrosion inhibitor: Cymbopogon schoenanthus extract in an acid cleaning solution for aluminum brass
- Cephradine drug release using electrospun chitosan nanofibers incorporated with halloysite nanoclay
- Exploring the charge injection aptitude in pyrazol and oxazole derivatives by the first-principles approach
- Preparation and characterization of vitamin D microemulsions using two-component surface-active stabilizer system
- Vildagliptin plasticized hydrogel film in the control of ocular inflammation after topical application: study of hydration and erosion behaviour
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Hydrothermal synthesis, characterization and photocatalytic activity of Mg doped MoS2
- Insight role of TiO2 to improve the photocatalytic performance of WO3 nanostructures for the efficient degradation of ciprofloxacin
- Highly photosensitized Mg4 Si6O15 (OH)2·6H2O@guar gum nanofibers for the removal of methylene blue under solar light irradiation
- Swelling and kinetic investigations of basic blue-3 sorption by polyacrylamide/Gum Arabic hybrid hydrogel in aqueous medium
- Green corrosion inhibitor: Cymbopogon schoenanthus extract in an acid cleaning solution for aluminum brass
- Cephradine drug release using electrospun chitosan nanofibers incorporated with halloysite nanoclay
- Exploring the charge injection aptitude in pyrazol and oxazole derivatives by the first-principles approach
- Preparation and characterization of vitamin D microemulsions using two-component surface-active stabilizer system
- Vildagliptin plasticized hydrogel film in the control of ocular inflammation after topical application: study of hydration and erosion behaviour