Startseite Solubilization, Hansen solubility parameters and apparent thermodynamic parameters of Osimertinib in (propylene glycol + water) cosolvent mixtures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Solubilization, Hansen solubility parameters and apparent thermodynamic parameters of Osimertinib in (propylene glycol + water) cosolvent mixtures

  • Faiyaz Shakeel EMAIL logo , Md. Khalid Anwer , Nazrul Haq und Ibrahim A. Alsarra
Veröffentlicht/Copyright: 7. Oktober 2020

Abstract

The solubilization, Hansen solubility parameters (HSPs) and apparent thermodynamic parameters of a novel anticancer medicine osimertinib (OMT) in binary propylene glycol (P) + water (W) cosolvent mixtures were evaluated. The mole fraction solubility (xe) of OMT in various (P + W) cosolvent mixtures including neat P and neat W was determined at T = 298.2–318.2 K and p = 0.1 MPa by applying a saturation shake flask method. HSPs of OMT, neat P, neat W and (P + W) cosolvent compositions free of OMT were also estimated. The xe values of OMT were regressed with Van’t Hoff, modified Apelblat, Yalkowsky-Roseman, Jouyban-Acree and Jouyban-Acree-Van’t Hoff models with an average errors of <3.0 %. The highest and lowest xe value of OMT was estimated in neat P (2.70 × 10−3 at T = 318.2 K) and neat W (1.81 × 10−5 at T = 298.2 K), respectively. Moreover, HSP of OMT was found to be closed with that of neat P. The solubility of OMT was found to be increased significantly with an increase in temperature and P mass fraction in all (P + W) cosolvent compositions including neat P and neat W. The results of activity coefficients suggested higher molecular interactions in OMT-P combination compared with OMT-W combination. The results of thermodynamic studies indicated an endothermic and entropy-driven dissolution of OMT in all (P + W) cosolvent compositions including neat P and neat W.


Corresponding author: Dr. Faiyaz Shakeel, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, E-mail:

Acknowledgments

The authors would like to extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the research group no. RG-1435-005.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was funded by Deanship of Scientific Research under grant RG-1435-005.

  3. Conflict of interest statement: The authors report no conflict of interest associated with this manuscript.

References

1. US FDA. AstraZeneca Pharmaceuticals LP TAGRISSOTM (osimertinib) tablet: highlights of prescribing information. 2017. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208065s007lbl.pdfN (accessed Jan 29, 2018).Suche in Google Scholar

2. Herbst, R. S., Heymach, J. V., Lippman, S. M. N. Engl. J. Med. 2008, 359, 1367; https://doi.org/10.1056/nejmra0802714.Suche in Google Scholar PubMed

3. Yang, P., Allens, M. S., Abury, M. C., Wampfler, J. A., Marks, R. S., Thibodeau, S., Adiei, A. A., Jett, J., Deschamps, C. Chest 2005, 128, 452; https://doi.org/10.1378/chest.128.1.452.Suche in Google Scholar PubMed

4. Castro, A. S., Parente, B., Gonçalves, I., Antunes, A., Barroso, A., Conde, S., Neves, S., Machado, J. C. Rev. Port. Pneumol. 2013, 19, 7; https://doi.org/10.1016/j.rppnen.2013.01.002.Suche in Google Scholar

5. Gahr, S., Stoehr, R., Geissinger, E., Ficker, J. H., Brueckl, W. M., Gschwendtner, A., Gattenloehner, S., Fuchs, F. S., Schulz, C., Rieker, R. J., Hartmann, A., Ruemmele, P., Dietmaier, W. Br. J. Cancer 2013, 109, 1821; https://doi.org/10.1038/bjc.2013.511.Suche in Google Scholar PubMed PubMed Central

6. Janssens, A., De Droogh, E., Lefebure, A., Kockx, M., Pauwels, P., Germonpre, P., van Meerbeeck, J. P. Acta Clin. Belg. 2014, 69, 92; https://doi.org/10.1179/0001551214z.00000000029.Suche in Google Scholar

7. Kuiper, J. L., Heideman, D. A., Thunnissen, E., Paul, M. A., van Wijk, A. W., Postmus, P. E., Smit, E. F. Lung Cancer 2014, 85, 19; https://doi.org/10.1016/j.lungcan.2014.03.016.Suche in Google Scholar PubMed

8. Oxnard, G. R., Arcila, M. E., Sima, C. S., Riely, G. J., Chmielecki, J., Kris, M. G., Pao, W., Ladanyi, M., Miller, V. A. Clin. Cancer Res. 2011, 17, 1616; https://doi.org/10.1158/1078-0432.ccr-10-2692.Suche in Google Scholar

9. Al-Shahrani, S., Ansari, M. J. Indo Am. J. Pharm. Sci. 2018, 5, 2610.https://doi.org/10.5281/zenodo.1220226.Suche in Google Scholar

10. Kale, A. R., Kakade, S., Bhosale, A. Curr. Pharm. Res. 2020, 10, 3630.Suche in Google Scholar

11. Imran, M. Z. Phys. Chem. 2019, 233, 273; https://doi.org/10.1515/zpch-2017-1066.Suche in Google Scholar

12. Alshetaili, A. S. Z. Phys. Chem. 2019, 233, 1129; https://doi.org/10.1515/zpch-2018-1323.Suche in Google Scholar

13. Castro, G. T., Flippa, M. A., Peralta, C. M., Davin, M. V., Almandoz, M. C., Gassul, E. I. Z. Phys. Chem. 2018, 232, 257; https://doi.org/10.1515/zpch-2017-0946.Suche in Google Scholar

14. Dumbrava, A., Berger, D., Prodan, G., Moscalu, F., Diacon, A. Z. Phys. Chem. 2018, 232, 61.https://doi.org/10.1515/zpch-2017-0005.Suche in Google Scholar

15. Kuttich, B., Malt, A., Weber, A., Grefe, A. K., Vietze, L., Stuhn, B. Z. Phys. Chem. 2018, 232, 1089; https://doi.org/10.1515/zpch-2017-1018.Suche in Google Scholar

16. Shakeel, F., Haq, N., Siddiqui, N. A., Alanazi, F. K., Alsarra, I. A. Food Chem. 2015, 188, 57; https://doi.org/10.1016/j.foodchem.2015.04.113.Suche in Google Scholar PubMed

17. Bhat, M. A., Haq, N., Shakeel, F. Thermochim. Acta 2014, 593, 37; https://doi.org/10.1016/j.tca.2014.08.013.Suche in Google Scholar

18. Jouyban-Gharamaleki, V., Rahimpour, E., Hemmati, S., Martinez, F., Jouyban, A. J. Mol. Liq. 2020, 299, E112136; https://doi.org/10.1016/j.molliq.2019.112136.Suche in Google Scholar

19. Osorio, I. M., Martinez, F., Delgado, D. R., Jouyban, A., Acree, W. E.Jr. J. Mol. Liq. 2020, 297, E111889; https://doi.org/10.1016/j.molliq.2019.111889.Suche in Google Scholar

20. Li, W., Farajtabar, A., Xing, R., Zhu, Y., Lv, R. J. Chem. Thermodyn. 2020, 143, E106045; https://doi.org/10.1016/j.jct.2019.106045.Suche in Google Scholar

21. Anwer, M. K., Mohammad, M., Fatima, F., Alshahrani, S. M., Aldawsari, M. F., Alalaiwe, A., Al-Shdefat, R., Shakeel, F. J. Mol. Liq. 2019, 284, 53; https://doi.org/10.1016/j.molliq.2019.03.128.Suche in Google Scholar

22. Higuchi, T., Connors, K. A. Adv. Anal. Chem. Inst. 1965, 4, 117.Suche in Google Scholar

23. Zhu, Q. N., Wang, Q., Hu, Y. B., Abliz, X. Molecules 2019, 24, E1346; https://doi.org/10.3390/molecules24071346.Suche in Google Scholar PubMed PubMed Central

24. Shakeel, F., Haq, N., Alsarra, I. A., Alshehri, S. Molecules 2020, 25, E1559; https://doi.org/10.3390/molecules25071559.Suche in Google Scholar PubMed PubMed Central

25. Alshahrani, S. M., Shakeel, F. Molecules 2020, 25, E2124; https://doi.org/10.3390/molecules25092124.Suche in Google Scholar PubMed PubMed Central

26. Wan, Y., He, H., Huang, Z., Zhang, P., Sha, J., Li, T., Ren, B. J. Mol. Liq. 2020, 300, E112097; https://doi.org/10.1016/j.molliq.2019.112097.Suche in Google Scholar

27. Ruidiaz, M. A., Delgado, D. R., Martínez, F., Marcus, Y. Fluid Phase Equilib 2010, 299, 259; https://doi.org/10.1016/j.fluid.2010.09.027.Suche in Google Scholar

28. Hildebrand, J. H., Prausnitz, J. M., Scott, R. L. Regular and Related Solutions; Van Nostrand Reinhold: New York, 1970.Suche in Google Scholar

29. Manrique, Y. J., Pacheco, D. P., Martínez, F. J. Sol. Chem. 2008, 37, 165–181; https://doi.org/10.1007/s10953-007-9228-0.Suche in Google Scholar

30. Holguín, A. R., Rodríguez, G. A., Cristancho, D. M., Delgado, D. R., Martínez, F. Fluid Phase Equilib 2012, 324, 134; https://doi.org/10.1016/j.fluid.2011.11.001.Suche in Google Scholar

31. Krug, R. R., Hunter, W. G., Grieger, R. A. J. Phys. Chem. 1976, 80, 2341; https://doi.org/10.1021/j100562a007.Suche in Google Scholar

32. Apelblat, A., Manzurola, E. J. Chem. Thermodyn. 1999, 31, 85; https://doi.org/10.1006/jcht.1998.0424.Suche in Google Scholar

33. Manzurola, E., Apelblat, A. J. Chem. Thermodyn. 2002, 34, 1127; https://doi.org/10.1006/jcht.2002.0975.Suche in Google Scholar

34. Yalkowsky, S. H., Roseman, T. J. Solubilization of drugs by cosolvents. In Techniques of Solubilization of Drugs; Yalkowsky, S. H., Ed. Marcel Dekker Inc: New York, 1981; pp. 91–134.Suche in Google Scholar

35. Jouyban, A. J. Pharm. Pharm. Sci. 2008, 11, 32; https://doi.org/10.18433/j3pp4k.Suche in Google Scholar PubMed

36. Shakeel, F., Haq, N., Alanazi, F. K., Alsarra, I. A. J. Ind. Eng. Chem. 2017, 56, 99; https://doi.org/10.1016/j.jiec.2017.07.002.Suche in Google Scholar

37. Khoubnasabjafari, M., Shayanfar, A., Martínez, F., Acree, W. E.Jr., Jouyban, A. J. Mol. Liq. 2016, 219, 435; https://doi.org/10.1016/j.molliq.2016.03.043.Suche in Google Scholar

38. Jouyban-Gharamaleki, A., Hanaee, J. Int. J. Pharm. 1997, 154, 245; https://doi.org/10.1016/s0378-5173(97)00136-1.Suche in Google Scholar

Received: 2020-07-25
Accepted: 2020-09-24
Published Online: 2020-10-07
Published in Print: 2021-08-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2020-1719/html
Button zum nach oben scrollen