Solubility determination, computational modeling, Hansen solubility parameters and apparent thermodynamic analysis of brigatinib in (ethanol + water) mixtures
-
Saad M. Alshahrani
, Munerah M. Alfadhel
, Khalil Y.R. Abujheisha , Bjad K. Almutairy , Ahmed S. Alalaiwe , Abdullah S. Alshetaili , Mohammed F. Aldawsari , Md. Khalid Anwer und Faiyaz Shakeel
Abstract
The solubility and various thermodynamic parameters of an antitumor drug brigatinib (BRN) in various ethanol (EtOH) + water (H2O) mixtures were determined in this study. The mole fraction solubility (xe) of BRN in various (EtOH + H2O) mixtures including pure EtOH and pure H2O was obtained at T = 298.2–323.2 K and p = 0.1 MPa by adopting a saturation shake flask method. Hansen solubility parameters (HSPs) of BRN, pure EtOH, pure H2O and (EtOH + H2O) mixtures free of BRN were also computed. The xe values of BRN were correlated using Van’t Hoff, Apelblat, Yalkowsky–Roseman, Jouyban–Acree and Jouyban–Acree–Van’t Hoff models with mean errors of <2.0%. The maximum and minimum xe value of BRN was obtained in pure EtOH (1.43 × 10−2 at T = 323.2 K) and pure H2O (3.08 × 10−6 at T = 298.2 K), respectively. The HSP of BRN was also found more closed with that of pure EtOH. The xe value of BRN was obtained as increasing significantly with the rise in temperature and increase in EtOH mass fraction in all (EtOH + H2O) mixtures including pure EtOH and pure H2O. The data of apparent thermodynamic analysis showed an endothermic and entropy-driven dissolution of BRN in all (EtOH + H2O) mixtures including pure EtOH and pure H2O.
Funding source: Prince Sattam bin Abdulaziz
Award Identifier / Grant number: 2020/03/11935
Acknowledgments
This project work was supported by the Deanship of Scientific Research (DSR) at Prince Sattam bin Abdulaziz University under the research project number (2020/03/11935).
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Huang, W. S., Liu, S., Zou, D., Thomas, M., Wang, Y., Zhou, T., Romero, J., Kohlmann, A., Li, F., Qi, J., Cai, L., Dwight, T. A., Xu, Y., Xu, R., Dodd, R., Toms, A., Parillon, L., Lu, X., Anjum, R., Zhang, S. J. Med. Chem. 2016, 59, 4948.10.1021/acs.jmedchem.6b00306Suche in Google Scholar
2. Sabari, J. K., Santini, F. C., Schram, A. M., Bergagnini, I., Chen, R., Mrad, C., Lai, W. V., Arbour, K. C., Drilon, A. OncoTargets Ther. 2017, 10, 1983.10.2147/OTT.S109295Suche in Google Scholar
3. Gettinger, S. N., Bazhenova, L. A., Langer, C. J., Salgia, R., Gold, K. A., Rosell, R., Shaw, A. T., Weiss, G. J., Tugnait, M., Narasimhan, N. I., Dorer, D. J., Kerstein, D., Rivera, V. M., Clackson, T., Haluska, F. G., Camidge, D. R. Lancet Oncol. 2016, 17, 1683.10.1016/S1470-2045(16)30392-8Suche in Google Scholar
4. Zhang, S., Anjum, R., Squillace, R., Nadworny, S., Zhou, T., Keats, J., Ning, Y., Wardwell, S. D., Miller, D., Song, Y., Eichinger, L., Moran, L., Huang, W.-S., Liu, S., Zou, D., Wang, Y., Mohemmad, Q., Jang, H. G., Ye, E., Narasimhan, N., Wang, F., Miret, J., Zhu, X., Clackson, T., Dalgarno, D., Shakespeare, W. C., Rivera, V. M. Clin. Canc. Res. 2016, 22, 5527.10.1158/1078-0432.CCR-16-0569Suche in Google Scholar PubMed
5. Alshahrani, S. M., Mohammad, M., Anwer, M. K., Fatima, F., Alshetaili, A. S., Alalaiwe, A., Alsulays, B.B., Shakeel, F. Acta Pol. Pharm. 2019, 76, 225. https://doi.org/10.32383/appdr/94616.Suche in Google Scholar
6. Markham, A. Drugs 2017, 77, 1131.10.1007/s40265-017-0776-3Suche in Google Scholar PubMed
7. Compound Summary for CID 68165256. Brigatinib. PubChem, Open Chemistry Database. US National Library of Medicine.Suche in Google Scholar
8. Tugnait, M., Gupta, N., Hanley, M. J., Venkatakrishnan, K., Sonnichsen, D., Kerstein, D., Dorer, D.J., Narasimhan, N. Clin. Pharmacol. Drug Dev. 2019, 8, 734.10.1002/cpdd.641Suche in Google Scholar PubMed PubMed Central
9. Kale, A. R., Kakade, S., Bhosale, A. J. Curr. Pharm. Res 2020, 10, 3630. https://doi.org/10.33786/JCPR.2020.v10i02.003.Suche in Google Scholar
10. Imran, M. Z. Phys. Chem. 2019, 233, 273.10.1515/zpch-2017-1066Suche in Google Scholar
11. Alshetaili, A. S. Z. Phys. Chem. 2019, 233, 1129.10.1515/zpch-2018-1323Suche in Google Scholar
12. Castro, G. T., Flippa, M. A., Peralta, C. M., Davin, M. V., Almandoz, M. C., Gassul, E. I. Z. Phys. Chem. 2018, 232, 257.10.1515/zpch-2017-0946Suche in Google Scholar
13. Dumbrava, A., Berger, D., Prodan, G., Moscalu, F., Diacon, A. Z. Phys. Chem. 2018, 232, 61.10.1515/zpch-2017-0005Suche in Google Scholar
14. Kuttich, B., Malt, A., Weber, A., Grefe, A. K., Vietze, L., Stuhn, B. Z. Phys. Chem. 2018, 232, 1089.10.1515/zpch-2017-1018Suche in Google Scholar
15. Shakeel, F., Iqbal, M., Ezzeldin, E., Haq, N. J. Mol. Liq. 2015, 209, 461.10.1016/j.molliq.2015.06.016Suche in Google Scholar
16. Shakeel, F., Alanazi, F. K., Alsarra, I. A., Haq, N. Bulgar. Chem. Comm. 2015, 47, 125.Suche in Google Scholar
17. Shakeel, F., Alanazi, F. K., Alsarra, I. A., Haq, N. Pharm. Dev. Technol. 2014, 19, 702.10.3109/10837450.2013.823992Suche in Google Scholar PubMed
18. Jouyban, A., Acree, W. E.Jr., Martinez, F. J. Mol. Liq. 2020, 313, E113579.10.1016/j.molliq.2020.113579Suche in Google Scholar
19. Li, W., Xing, R., Zhu, Y., Zhao, H., Lv, R. J. Chem. Eng. Data 2020, 65, 3658.10.1021/acs.jced.0c00267Suche in Google Scholar
20. Li, X., He, Y., Xu, Y., Zhang, X., Zheng, M., Zhao, H. J. Chem. Thermodyn. 2020, 142, E106014.10.1016/j.jct.2019.106014Suche in Google Scholar
21. Higuchi, T., Connors, K. A. Adv. Anal. Chem. Inst. 1965, 4, 117.Suche in Google Scholar
22. Alshehri, S., Shakeel, F. J. Mol. Liq. 2020, 307, E112970.10.1016/j.molliq.2020.112970Suche in Google Scholar
23. Zhu, Q. N., Wang, Q., Hu, Y. B., Abliz, X. Molecules 2019, 24, E1346.10.3390/molecules24071346Suche in Google Scholar PubMed PubMed Central
24. Shakeel, F., Haq, N., Alsarra, I. A., Alshehri, S. Molecules 2020, 25, E1559.10.3390/molecules25071559Suche in Google Scholar PubMed PubMed Central
25. Alshahrani, S. M., Shakeel, F. Molecules 2020, 25, E2124.10.3390/molecules25092124Suche in Google Scholar PubMed PubMed Central
26. Wan, Y., He, H., Huang, Z., Zhang, P., Sha, J., Li, T., Ren, B. J. Mol. Liq. 2020, 300, E112097.10.1016/j.molliq.2019.112097Suche in Google Scholar
27. Ruidiaz, M. A., Delgado, D. R., Martínez, F., Marcus, Y. Fluid Phase Equilib. 2010, 299, 259.10.1016/j.fluid.2010.09.027Suche in Google Scholar
28. Holguín, A. R., Rodríguez, G. A., Cristancho, D. M., Delgado, D. R., Martínez, F. Fluid Phase Equilib. 2012, 324, 134.10.1016/j.fluid.2011.11.001Suche in Google Scholar
29. Krug, R. R., Hunter, W. G., Grieger, R. A. J. Phys. Chem. 1976, 80, 2341.10.1021/j100562a007Suche in Google Scholar
30. Apelblat, A., Manzurola, E. J. Chem. Thermodyn. 1999, 31, 85.10.1006/jcht.1998.0424Suche in Google Scholar
31. Manzurola, E., Apelblat, A. J. Chem. Thermodyn. 2002, 34, 1127.10.1006/jcht.2002.0975Suche in Google Scholar
32. Yalkowsky, S. H., Roseman, T. J. Solubilization of drugs by cosolvents. In Techniques of Solubilization of Drugs; Yalkowsky, S. H., Ed. Marcel Dekker Inc: New York, 1981; pp. 91–134.Suche in Google Scholar
33. Jouyban, A. J. Pharm. Pharm. Sci. 2008, 11, 32.10.18433/J3PP4KSuche in Google Scholar
34. Shakeel, F., Haq, N., Alanazi, F. K., Alsarra, I. A. J. Ind. Eng. Chem. 2017, 56, 99.10.1016/j.jiec.2017.07.002Suche in Google Scholar
35. Khoubnasabjafari, M., Shayanfar, A., Martínez, F., Acree, W. E.Jr., Jouyban, A. J. Mol. Liq. 2016, 219, 435.10.1016/j.molliq.2016.03.043Suche in Google Scholar
36. Jouyban-Gharamaleki, A., Hanaee, J. Int. J. Pharm. 1997, 154, 245.10.1016/S0378-5173(97)00136-1Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Solubility determination, computational modeling, Hansen solubility parameters and apparent thermodynamic analysis of brigatinib in (ethanol + water) mixtures
- Solubilization, Hansen solubility parameters and apparent thermodynamic parameters of Osimertinib in (propylene glycol + water) cosolvent mixtures
- Astaxanthin–garlic oil nanoemulsions preparation using spontaneous microemulsification technique: optimization and their physico–chemical properties
- In-situ stabilization of silver nanoparticles in polymer hydrogels for enhanced catalytic reduction of macro and micro pollutants
- Kinetic and equilibrium study of (poly amido amine) PAMAM dendrimers for the removal of chromium from tannery wastewater
- Experimental modeling, optimization and comparison of coagulants for removal of metallic pollutants from wastewater
- ZnO, CuO and Fe2O3 green synthesis for the adsorptive removal of direct golden yellow dye adsorption: kinetics, equilibrium and thermodynamics studies
- Kinetic and thermodynamic studies for evaluation of adsorption capacity of fungal dead biomass for direct dye
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Solubility determination, computational modeling, Hansen solubility parameters and apparent thermodynamic analysis of brigatinib in (ethanol + water) mixtures
- Solubilization, Hansen solubility parameters and apparent thermodynamic parameters of Osimertinib in (propylene glycol + water) cosolvent mixtures
- Astaxanthin–garlic oil nanoemulsions preparation using spontaneous microemulsification technique: optimization and their physico–chemical properties
- In-situ stabilization of silver nanoparticles in polymer hydrogels for enhanced catalytic reduction of macro and micro pollutants
- Kinetic and equilibrium study of (poly amido amine) PAMAM dendrimers for the removal of chromium from tannery wastewater
- Experimental modeling, optimization and comparison of coagulants for removal of metallic pollutants from wastewater
- ZnO, CuO and Fe2O3 green synthesis for the adsorptive removal of direct golden yellow dye adsorption: kinetics, equilibrium and thermodynamics studies
- Kinetic and thermodynamic studies for evaluation of adsorption capacity of fungal dead biomass for direct dye