Abstract
This study focuses on evaluation of degradation aptitude of white rot fungus (Coriolus versicolor) against Indosol Turquoise FBL dye. The outcome of numerous parameters including pH, temperature, carbon sources, nitrogen sources, C/N ratio and effect of dye concentration were studied. Maximum decolorization (99.896%) of Indosol Turquoise FBL was obtained by C. versicolor under optimized conditions. After three days, the maximum dye degradation (98%) was observed at pH 4 and 30 °C. Six carbon sources fructose, glucose, maltose, sucrose, rice bran and wheat bran were used and 96.66% degradation was observed by maltose at its optimum growth concentration (0.1 g/100 mL). Various nitrogen sources were employed for decolorization but ammonium nitrate decolorized dye up to 98.05%. The activity of three different enzymes laccase, Lignin peroxidase (LiP) and Manganese peroxidase (MnP) were calculated. The dead biomass of White rot fungus (WRF) was used for biosorption experiments. Maximum q (36 mg/g) was obtained at pH 2, at 30 °C using 0.05 g biosorbent. An increase in the q value was observed with increase in dye concentration. Freundlich adsorption isotherm and pseudo second order kinetics were followed by the data. It can be concluded that C. versicolor could be an efficient source for degradation of dyes from industrial effluents.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Nisar, N., Ali, O., Islam, A., Ahmad, A., Yameen, M., Ghaffar, A., Iqbal, M., Nazir, A., Masood, N. Z. Phys. Chem. 2019, 233, 1603. https://doi.org/10.1515/zpch-2018-1259.10.1515/zpch-2018-1259Suche in Google Scholar
2. Khan, N. U. H., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 361. https://doi.org/10.1515/zpch-2018-1194.10.1515/zpch-2018-1194Suche in Google Scholar
3. Kamran, U., Bhatti Haq, N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1325. https://doi.org/10.1515/zpch-2018-1238.10.1515/zpch-2018-1238Suche in Google Scholar
4. Bibi, I., Hussain, S., Majid, F., Kamal, S., Ata, S., Sultan, M., Din Muhammad, I., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1431. https://doi.org/10.1515/zpch-2018-1162.10.1515/zpch-2018-1162Suche in Google Scholar
5. Ahmad, M., Abbas, G., Haider, R., Jalal, F., Shar Ghulam, A., Soomro Gul, A., Qureshi, N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1469. https://doi.org/10.1515/zpch-2018-1201.10.1515/zpch-2018-1201Suche in Google Scholar
6. Greis, K., Bethke, K., Stückrath, J. B., Ingber, T. T. K., Valiyaveettil, S., Rademann, K. Clean Soil Air Water 2019, 47, 1900179. https://doi.org/10.1002/clen.201900179.10.1002/clen.201900179Suche in Google Scholar
7. Bethke, K., Palantöken, S., Andrei, V., Roß, M., Raghuwanshi, V. S., Kettemann, F., Greis, K., Ingber, T. T. K., Stückrath, J. B., Valiyaveettil, S., Rademann, K. Adv. Funct. Mater. 2018, 28, 1800409. https://doi.org/10.1002/adfm.201800409.10.1002/adfm.201800409Suche in Google Scholar
8. Setyono, D., Valiyaveettil, S. J. Hazard. Mater. 2016, 302, 120–128. https://doi.org/10.1016/j.jhazmat.2015.09.046.10.1016/j.jhazmat.2015.09.046Suche in Google Scholar PubMed
9. Mallampati, R., Xuanjun, L., Adin, A., Valiyaveettil, S. ACS Sustain. Chem. Eng. 2015, 3, 1117. https://doi.org/10.1021/acssuschemeng.5b00207.10.1021/acssuschemeng.5b00207Suche in Google Scholar
10. Mallampati, R., Valiyaveettil, S. ACS Appl. Mater. Interfaces 2013, 5, 4443. https://doi.org/10.1021/am400901e.10.1021/am400901eSuche in Google Scholar PubMed
11. Manikandan, A., Durka, M., Antony, S. A. Adv. Sci. Eng. Med. 2015, 7, 33. https://doi.org/10.1166/asem.2015.1654.10.1166/asem.2015.1654Suche in Google Scholar
12. Manimegalai, D. K., Manikandan, A., Moortheswaran, S., Antony, S. A. J. Supercond. Nov. Magn. 2015, 28, 2755. https://doi.org/10.1007/s10948-015-3089-3.10.1007/s10948-015-3089-3Suche in Google Scholar
13. Asiri, S., Sertkol, M., Güngüneş, H., Amir, M., Manikandan, A., Ercan, İ., Baykal, A. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1587. https://doi.org/10.1007/s10904-018-0813-z.10.1007/s10904-018-0813-zSuche in Google Scholar
14. Thilagavathi, P., Manikandan, A., Sujatha, S., Jaganathan, S. K., Antony, S. A. Nanosci. Nanotechnol. Lett. 2016, 8, 438. https://doi.org/10.1166/nnl.2016.2150.10.1166/nnl.2016.2150Suche in Google Scholar
15. Jayasree, S., Manikandan, A., Mohideen, A. M., Barathiraja, C., Antony, S. A. Adv. Sci. Eng. Med. 2015, 7, 672. https://doi.org/10.1166/asem.2015.1750.10.1166/asem.2015.1750Suche in Google Scholar
16. Awwad, A. M., Amer, M. W., Salem, N. M., Abdeen, A. O. Chem. Int. 2020, 6, 151. https://doi.org/10.5281/zenodo.3559520.Suche in Google Scholar
17. Alkherraz, A. M., Ali, A. K., Elsherif, K. M. Chem. Int. 2020, 6, 11. https://doi.org/10.5281/zenodo.2579465.Suche in Google Scholar
18. Awwad, A. M., Salem, N. M., Aqarbeh, M. M., Abdulaziz, F. M. Chem. Int. 2020, 6, 42. https://doi.org/10.5281/zenodo.3243157.Suche in Google Scholar
19. Alasadi, M., Khaili, F. I., Awwad, A. M. Chem. Int. 2020, 5, 258. https://doi.org/10.5281/zenodo.2644985.Suche in Google Scholar
20. Hassen, E. B., Asmare, A. M. Chem. Int. 2019, 5, 87. https://doi.org/10.5281/zenodo.1475403.Suche in Google Scholar
21. Yasmin, S., Nouren, S., Bhatti Haq, N., Iqbal Dure, N., Iftikhar, S., Majeed, J., Mustafa, R., Nisar, N., Nisar, J., Nazir, A., Iqbal, M., Rizvi, H. Green Process. Synth. 2020, 9, 87. https://doi.org/10.1515/gps-2020-0010.10.1515/gps-2020-0010Suche in Google Scholar
22. Sohail, I., Bhatti, I. A., Ashar, A., Sarim, F. M., Mohsin, M., Naveed, R., Yasir, M., Iqbal, M., Nazir, A. J. Mater. Res. Technol. 2020, 9, 498. https://doi.org/10.1016/j.jmrt.2019.10.079.10.1016/j.jmrt.2019.10.079Suche in Google Scholar
23. Nisar, J., Hassan, S., Khan Muhammad, I., Iqbal, M., Nazir, A., Sharif, A., Ahmed, E. Int. J. Chem. React. Eng. 2020, 18, 20190123. https://doi.org/10.1515/ijcre-2019-0123.10.1515/ijcre-2019-0123Suche in Google Scholar
24. Jamil, A., Bokhari, T. H., Javed, T., Mustafa, R., Sajid, M., Noreen, S., Zuber, M., Nazir, A., Iqbal, M., Jilani, M. I. J. Mater. Res. Technol. 2020, 9, 1119. https://doi.org/10.1016/j.jmrt.2019.11.035.10.1016/j.jmrt.2019.11.035Suche in Google Scholar
25. Iqbal, M., Fatima, M., Javed, T., Anam, A., Nazir, A., Kanwal, Q., Shehzadi, Z., Khan, M. I., Nisar, J., Abbas, M., Naz, S. Mater. Res. Express 2020, 7, 015070. https://doi.org/10.1088/2053-1591/ab692e.10.1088/2053-1591/ab692eSuche in Google Scholar
26. Nouren, S., Sarwar, M., Muhi-ud-Din, G., Yameen, M., Bhatti, H. N., Soomro, G. A., Suleman, M., Bibi, I., Kausar, A., Nazir, A. Pol. J. Environ. Stud. 2019, 28, 283. https://doi.org/10.15244/pjoes/81090.10.15244/pjoes/81090Suche in Google Scholar
27. Sasmaz, M., Obek, E., Sasmaz, A. Bull. Environ. Contam. Toxicol. 2016, 97, 832. https://doi.org/10.1007/s00128-016-1929-x.10.1007/s00128-016-1929-xSuche in Google Scholar PubMed
28. Sasmaz, M., Akgül, B., Yıldırım, D., Sasmaz, A. Int. J. Phytoremediation 2016, 18, 69. https://doi.org/10.1080/15226514.2015.1058334.10.1080/15226514.2015.1058334Suche in Google Scholar PubMed
29. Sasmaz, A., Mete Dogan, I., Sasmaz, M. Water Environ. J. 2016, 30, 235. https://doi.org/10.1111/wej.12185.10.1111/wej.12185Suche in Google Scholar
30. Sasmaz, M., Akgül, B., Sasmaz, A. Bull. Environ. Contam. Toxicol. 2015, 94, 598. https://doi.org/10.1007/s00128-015-1527-3.10.1007/s00128-015-1527-3Suche in Google Scholar PubMed
31. Asgher, M., Azim, N., Bhatti, H. N. Biochem. Eng. J. 2009, 47, 61. https://doi.org/10.1016/j.bej.2009.07.003.10.1016/j.bej.2009.07.003Suche in Google Scholar
32. Asgher, M., Batool, S., Bhatti, H. N., Noreen, R., Rahman, S., Asad, M. J. Int. Biodeterior. Biodegrad. 2008, 62, 465. https://doi.org/10.1016/j.ibiod.2008.05.003.10.1016/j.ibiod.2008.05.003Suche in Google Scholar
33. Kumari, K., Abraham, T. E. Bioresour. Technol. 2007, 98, 1704. https://doi.org/10.1016/j.biortech.2006.07.030.10.1016/j.biortech.2006.07.030Suche in Google Scholar PubMed
34. Babitha, N., Priya, L. S., Christy, S. R., Manikandan, A., Dinesh, A., Durka, M., Arunadevi, S. J. Nanosci. Nanotechnol. 2019, 19, 2888. https://doi.org/10.1166/jnn.2019.16023.10.1166/jnn.2019.16023Suche in Google Scholar PubMed
35. Seevakan, K., Manikandan, A., Devendran, P., Shameem, A., Alagesan, T. Ceram. Int. 2018, 44, 13879. https://doi.org/10.1016/j.ceramint.2018.04.235.10.1016/j.ceramint.2018.04.235Suche in Google Scholar
36. Bomila, R., Srinivasan, S., Gunasekaran, S., Manikandan, A. J. Supercond. Nov. Magn. 2018, 31, 855. https://doi.org/10.1007/s10948-017-4261-8.10.1007/s10948-017-4261-8Suche in Google Scholar
37. Bhavani, P., Manikandan, A., Paulraj, P., Dinesh, A., Durka, M., Antony, S. A. J. Nanosci. Nanotechnol. 2018, 18, 4072. https://doi.org/10.1166/jnn.2018.15217.10.1166/jnn.2018.15217Suche in Google Scholar
38. Kanwal, N., Asgher, M., Bhatti, H. N., Sheikh, M. A. Fresenius Environ. Bull. 2010, 19, 63.Suche in Google Scholar
39. Wariishi, H., Valli, K., Gold, M. H. J. Biol. Chem. 1992, 267, 23688.10.1016/S0021-9258(18)35893-9Suche in Google Scholar
40. Paszczyński, A., Huynh, V. -B., Crawford, R. FEMS Microbiol. Lett. 1985, 29, 37. https://doi.org/10.1111/j.1574-6968.1985.tb00831.x.10.1111/j.1574-6968.1985.tb00831.xSuche in Google Scholar
41. Arshad, R., Bokhari, T. H., Khosa, K. K., Bhatti, I. A., Munir, M., Iqbal, M., Iqbal, D. N., Khan, M. I., Iqbal, M., Nazir, A. Radiat. Phys. Chem. 2020, 168, 108637. https://doi.org/10.1016/j.radphyschem.2019.108637.10.1016/j.radphyschem.2019.108637Suche in Google Scholar
42. Khera, R. A., Iqbal, M., Jabeen, S., Abbas, M., Nazir, A., Nisar, J., Ghaffar, A., Shar, G. A., Tahir, M. A. Surf. Interfaces 2019, 14, 138. https://doi.org/10.1016/j.surfin.2018.12.004.10.1016/j.surfin.2018.12.004Suche in Google Scholar
43. Jabeen, S., Ali, S., Nadeem, M., Arif, K., Qureshi, N., Shar, G. A., Soomro, G. A., Iqbal, M., Nazir, A., Siddiqua, U. H. Pol. J. Environ. Stud. 2019, 28, 2145. https://doi.org/10.15244/pjoes/85125.10.15244/pjoes/85125Suche in Google Scholar
44. Silambarasu, A., Manikandan, A., Balakrishnan, K., Jaganathan, S. K., Manikandan, E., Aanand, J. S. J. Nanosci. Nanotechnol. 2018, 18, 3523. https://doi.org/10.1166/jnn.2018.14669.10.1166/jnn.2018.14669Suche in Google Scholar PubMed
45. Shameem, A., Devendran, P., Siva, V., Raja, M., Bahadur, S. A., Manikandan, A. J. Inorg. Organomet. Polym. Mater. 2017, 27, 692. https://doi.org/10.1007/s10904-017-0512-1.10.1007/s10904-017-0512-1Suche in Google Scholar
46. Shin, K. S., Lee, Y. J. Arch. Biochem. Biophys. 2000, 384, 109. https://doi.org/10.1006/abbi.2000.2083.10.1006/abbi.2000.2083Suche in Google Scholar PubMed
47. Tien, M., Kirk, T. K. Proc. Natl. Acad. Sci. U.S.A. 1984, 81, 2280. https://doi.org/10.1073/pnas.81.8.2280.10.1073/pnas.81.8.2280Suche in Google Scholar
48. Stell, R. G., Torrie, J. H., Dickey, D. A. Principles and Procedures of Statistics: A Biometrical Approach; MacGraw-Hill: New York, 1980.Suche in Google Scholar
49. Kapdan, I. K., Kargia, F., McMullan, G., Marchant, R. Enzyme Microb. Technol. 2000, 26, 381. https://doi.org/10.1016/s0141-0229(99)00168-4.10.1016/S0141-0229(99)00168-4Suche in Google Scholar
50. Asgher, M., Noreen, S., Bhatti, H. N. Water Environ. Res. 2010, 82, 357. https://doi.org/10.2175/106143009x12487095237116.10.2175/106143009X12487095237116Suche in Google Scholar
51. Rahmat, M., Rehman, A., Rahmat, S., Bhatti, H. N., Iqbal, M., Khan, W. S., Bajwa, S. Z., Rahmat, R., Nazir, A. J. Mater. Res. Technol. 2019, 8, 5149. https://doi.org/10.1016/j.jmrt.2019.08.038.10.1016/j.jmrt.2019.08.038Suche in Google Scholar
52. Bhatti, H. N., Akram, N., Asgher, M. Appl. Biochem. Biotechnol. 2008, 149, 255. https://doi.org/10.1007/s12010-007-8123-x.10.1007/s12010-007-8123-xSuche in Google Scholar
53. Yesilada, O., Cing, S., Asma, D. Bioresour. Technol. 2002, 81, 155–157. https://doi.org/10.1016/s0960-8524(01)00117-1.10.1016/S0960-8524(01)00117-1Suche in Google Scholar
54. Mehna, A., Bajpai, P., Bajpai, P. K. Enzyme Microb. Technol. 1995, 17, 18. https://doi.org/10.1016/0141-0229(94)00081-2.10.1016/0141-0229(94)00081-2Suche in Google Scholar
55. Schoemaker, H. E., Lundell, T. K., Hatakka, A. I., Piontek, K. FEMS Microbiol. Rev. 1994, 13, 321. https://doi.org/10.1111/j.1574-6976.1994.tb00052.x.10.1111/j.1574-6976.1994.tb00052.xSuche in Google Scholar
56. Babarinde, A., Ogundipe, K., Sangosanya, K. T., Akintola, B. D., Hassan, A. O. E. Chem. Int. 2016, 2, 89. https://doi.org/10.5281/zenodo.1470603.Suche in Google Scholar
57. Srivastava, S., Prajapati, D. Chem. Int. 2017, 3, 32. https://doi.org/10.5281/zenodo.1473052.Suche in Google Scholar
58. Majolagbe, A. O., Adeyi, A. A., Osibanjo, O., Adams, A. O., Ojuri, O. O. Chem. Int. 2017, 3, 58. https://doi.org/10.5281/zenodo.1473072.Suche in Google Scholar
59. Maurya, N. S., Mittal, A. K., Cornel, P., Rother, E. Bioresour. Technol. 2006, 97, 512. https://doi.org/10.1016/j.biortech.2005.02.045.10.1016/j.biortech.2005.02.045Suche in Google Scholar PubMed
60. Aksu, Z., Karabayır, G. Bioresour. Technol. 2008, 99, 7730. https://doi.org/10.1016/j.biortech.2008.01.056.10.1016/j.biortech.2008.01.056Suche in Google Scholar PubMed
61. Bayramoğlu, G., Arıca, M. Y. J. Hazard. Mater. 2007, 143, 135. https://doi.org/10.1016/j.jhazmat.2006.09.002.10.1016/j.jhazmat.2006.09.002Suche in Google Scholar PubMed
62. Almeida, C., Debacher, N., Downs, A., Cottet, L., Mello, C. J. Colloid Interface Sci. 2009, 332, 46. https://doi.org/10.1016/j.jcis.2008.12.012.10.1016/j.jcis.2008.12.012Suche in Google Scholar PubMed
63. Arshad, M., Ehtisham-ul-Haque, S., Bilal, M., Ahmad, N., Ahmad, A., Abbas, M., Nisar, J., Khan, M. I., Nazir, A., Ghaffar, A., Iqbal, M. Mater. Res. Express 2020, 7, 015407. https://doi.org/10.1088/2053-1591/ab6380.10.1088/2053-1591/ab6380Suche in Google Scholar
64. Sharma Arun, K., Acharya, S. Z. Phys. Chem. 2019, 233, 691. https://doi.org/10.1515/zpch-2018-1181.10.1515/zpch-2018-1181Suche in Google Scholar
65. Veisi, H., Moradi, S. B., Saljooqi, A., Safarimehr, P. Mater. Sci. Eng. C 2019, 100, 445. https://doi.org/10.1016/j.msec.2019.03.036.10.1016/j.msec.2019.03.036Suche in Google Scholar PubMed
66. Sadhanala, H., Senapati, S., Harika, K. V., Nanda, K. K., Gedanken, A. New J. Chem. 2018, 42, 14318. https://doi.org/10.1039/c8nj01731j.10.1039/C8NJ01731JSuche in Google Scholar
67. Lagergren, S. K., Vetenskapsakad, S. Handingarl 1898, 24, 1.Suche in Google Scholar
68. Bhatti, H. N., Safa, Y., Yakout, S. M., Shair, O. H., Iqbal, M., Nazir, A. Int. J. Biol. Macromol. 2020, 150, 861. https://doi.org/10.1016/j.ijbiomac.2020.02.093.10.1016/j.ijbiomac.2020.02.093Suche in Google Scholar PubMed
69. Shindy, A. Chem. Int. 2017, 3, 97. https://doi.org/10.5281/zenodo.1473080.Suche in Google Scholar
70. Sanda, M. D. A., Badu, M., Awudza, J. A. M., Boadi, N. O. Chem. Int. 2021, 7, 9. https://doi.org/10.5281/zenodo.4018012.Suche in Google Scholar
71. Ukpaka, C. P., Neo, O. N. Chem. Int. 2021, 7, 62. http://doi.org/10.5281/zenodo.4032367.Suche in Google Scholar
72. Iqbal, M., Abbas, M., Nisar, J., Nazir, A., Qamar, A. Chem. Int. 2019, 5, 1. https://doi.org/10.5281/zenodo.1475399.Suche in Google Scholar
73. Ibisi, N. E., Asoluka, C. A. Chem. Int. 2018, 4, 52. https://doi.org/10.5281/zenodo.1475334.Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Solubility determination, computational modeling, Hansen solubility parameters and apparent thermodynamic analysis of brigatinib in (ethanol + water) mixtures
- Solubilization, Hansen solubility parameters and apparent thermodynamic parameters of Osimertinib in (propylene glycol + water) cosolvent mixtures
- Astaxanthin–garlic oil nanoemulsions preparation using spontaneous microemulsification technique: optimization and their physico–chemical properties
- In-situ stabilization of silver nanoparticles in polymer hydrogels for enhanced catalytic reduction of macro and micro pollutants
- Kinetic and equilibrium study of (poly amido amine) PAMAM dendrimers for the removal of chromium from tannery wastewater
- Experimental modeling, optimization and comparison of coagulants for removal of metallic pollutants from wastewater
- ZnO, CuO and Fe2O3 green synthesis for the adsorptive removal of direct golden yellow dye adsorption: kinetics, equilibrium and thermodynamics studies
- Kinetic and thermodynamic studies for evaluation of adsorption capacity of fungal dead biomass for direct dye
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Solubility determination, computational modeling, Hansen solubility parameters and apparent thermodynamic analysis of brigatinib in (ethanol + water) mixtures
- Solubilization, Hansen solubility parameters and apparent thermodynamic parameters of Osimertinib in (propylene glycol + water) cosolvent mixtures
- Astaxanthin–garlic oil nanoemulsions preparation using spontaneous microemulsification technique: optimization and their physico–chemical properties
- In-situ stabilization of silver nanoparticles in polymer hydrogels for enhanced catalytic reduction of macro and micro pollutants
- Kinetic and equilibrium study of (poly amido amine) PAMAM dendrimers for the removal of chromium from tannery wastewater
- Experimental modeling, optimization and comparison of coagulants for removal of metallic pollutants from wastewater
- ZnO, CuO and Fe2O3 green synthesis for the adsorptive removal of direct golden yellow dye adsorption: kinetics, equilibrium and thermodynamics studies
- Kinetic and thermodynamic studies for evaluation of adsorption capacity of fungal dead biomass for direct dye