Startseite The Effect of Crystalline Microstructure of PVDF Binder on Mechanical and Electrochemical Performance of Lithium-Ion Batteries Cathode
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The Effect of Crystalline Microstructure of PVDF Binder on Mechanical and Electrochemical Performance of Lithium-Ion Batteries Cathode

  • Mohammad Mohsen Loghavi EMAIL logo , Saeed Bahadorikhalili , Najme Lari , Mohammad Hadi Moghim , Mohsen Babaiee und Rahim Eqra
Veröffentlicht/Copyright: 28. Februar 2020

Abstract

In this paper, the effect of the crystalline microstructures of polyvinylidene fluoride (PVDF), as cathode binder, on mechanical and electrochemical properties of the cathode, and on the cell performance is investigated. The crystalline phases of the PVDF films prepared at different temperatures are determined by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) and also mechanical strength of PVDF films evaluated by a tensile test. The cathodes were prepared at altered temperatures to achieve different PVDF phases. The effect of various crystalline phases on the cathode performance was studied. The obtained cathodes were analyzed by scanning electron microscope (SEM), contact angle measurement, and adhesion test. The electrochemical performance of the cathodes was evaluated by charge-discharge cycling test and AC impedance spectroscopy. Mechanical tests results showed that the cathode which is prepared at 60 °C has the best adhesion and mechanical stability. In addition, the charge-discharge cycling studies showed that this cathode has the highest capacity efficiency. AC impedance spectroscopy illustrated that this electrode has the lowest charge transfer resistance and SEI resistance.

References

1. B. K. Licht, F. Homeyer, K. Bösebeck, M. Binnewies, P. Heitjans, Z. Phys. Chem. 229 (2015) 1415.10.1515/zpch-2015-0003Suche in Google Scholar

2. M. H. Moghim, R. Eqra, M. Babaiee, M. Zarei-Jelyani, M. M. Loghavi, J. Electroanal. Chem. 789 (2017) 67.10.1016/j.jelechem.2017.02.031Suche in Google Scholar

3. M. Z. Jelyani, S. Rashid-Nadimi, S. Asghari, J. Solid State Electrochem. 21 (2017) 69.10.1007/s10008-016-3336-ySuche in Google Scholar

4. Z. Du, D. L. Wood, C. Daniel, S. Kalnaus, J. Li, J. Appl. Electrochem. 47 (2017) 405.10.1007/s10800-017-1047-4Suche in Google Scholar

5. P. Jakes, L. Kröll, A. Ozarowski, J. van Tol, D. Mikhailova, H. Ehrenberg, R.-A. Eichel, Z. Phys. Chem. 231 (2017) 905.10.1515/zpch-2016-0909Suche in Google Scholar

6. K. Volgmann, V. Werth, S. Nakhal, M. Lerch, T. Bredow, P. Heitjans, Z. Phys. Chem. 231 (2017) 1243.10.1515/zpch-2016-0948Suche in Google Scholar

7. E. Vasilyeva, A. Nasibulin, O. Tolochko, A. Rudskoy, A. Sachdev, X. Xiao, Z. Phys. Chem. 229 (2015) 1429.10.1515/zpch-2015-0573Suche in Google Scholar

8. E. Hüger, B. Jerliu, L. Dörrer, M. Bruns, G. Borchardt, H. Schmidt, Z. Phys. Chem. 229 (2015) 1375.10.1515/zpch-2014-0650Suche in Google Scholar

9. R. Hausbrand, A. Schwöbel, W. Jaegermann, M. Motzko, D. Ensling, Z. Phys. Chem. 229 (2015) 1387.10.1515/zpch-2014-0664Suche in Google Scholar

10. K. Volgmann, A. Schulz, A.-M. Welsch, T. Bredow, S. Nakhal, M. Lerch, P. Heitjans, Z. Phys. Chem. 229 (2015) 1351.10.1515/zpch-2015-0585Suche in Google Scholar

11. D. Wiedemann, S. Nakhal, A. Senyshyn, T. Bredow, M. Lerch, Z. Phys. Chem. 229 (2015) 1275.10.1515/zpch-2014-0659Suche in Google Scholar

12. T. Placke, P. Bieker, S. F. Lux, O. Fromm, H.-W. Meyer, S. Passerini, M. Winter, Z. Phys. Chem. 226 (2012) 391.10.1524/zpch.2012.0222Suche in Google Scholar

13. S. Laubach, S. Laubach, P. C. Schmidt, M. Gröting, K. Albe, W. Jaegermann, W. Wolf, Z. Phys. Chem. 223 (2009) 1327.10.1524/zpch.2009.6082Suche in Google Scholar

14. M. Stein, C.-F. Chen, M. Mullings, D. Jaime, A. Zaleski, P. P. Mukherjee, C. P. Rhodes, J. Electrochem. Energy Convers. Storage. 13 (2016) 031001.10.1115/1.4034755Suche in Google Scholar

15. A. Gören, C. Costa, M. M. Silva, S. Lanceros-Mendez, Solid State Ionics. 295 (2016) 57.10.1016/j.ssi.2016.07.012Suche in Google Scholar

16. C. Mao, S. J. An, H. M. Meyer III, J. Li, M. Wood, R. E. Ruther, D. L. Wood III, J. Power Sources. 402 (2018) 107.10.1016/j.jpowsour.2018.09.019Suche in Google Scholar

17. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 4 (2011) 3243.10.1039/c1ee01598bSuche in Google Scholar

18. J. W. Fergus, J. Power Sources. 195 (2010) 939.10.1016/j.jpowsour.2009.08.089Suche in Google Scholar

19. K. Du, H. Xie, G. Hu, Z. Peng, Y. Cao, F. Yu, ACS Appl. Mater. Interfaces. 8 (2016) 17713.10.1021/acsami.6b05629Suche in Google Scholar PubMed

20. N. Leifer, O. Srur-Lavi, I. Matlahov, B. Markovsky, D. Aurbach, G. Goobes, Chem. Mater. 28 (2016) 7594.10.1021/acs.chemmater.6b01412Suche in Google Scholar

21. H. Y. Tran, G. Greco, C. Täubert, M. Wohlfahrt-Mehrens, W. Haselrieder, A. Kwade, J. Power Sources. 210 (2012) 276.10.1016/j.jpowsour.2012.03.017Suche in Google Scholar

22. Z. Zhang, T. Zeng, Y. Lai, M. Jia, J. Li, J. Power Sources. 247 (2014) 1.10.1016/j.jpowsour.2013.08.051Suche in Google Scholar

23. L. Chen, X. Xie, J. Xie, K. Wang, J. Yang, J. Appl. Electrochem. 36 (2006) 1099.10.1007/s10800-006-9191-2Suche in Google Scholar

24. H. Maleki, G. Deng, A. Anani, J. Howard, J. Electrochem. Soc. 146 (1999) 3224.10.1149/1.1392458Suche in Google Scholar

25. J. Yu, X. Huang, C. Wu, P. Jiang, IEEE Trans. Dielectr. Electr. Insul. 18 (2011) 478.10.1109/TDEI.2011.5739452Suche in Google Scholar

26. G.-D. Kang, Y.-M. Cao, J. Membr. Sci. 463 (2014) 145.10.1016/j.memsci.2014.03.055Suche in Google Scholar

27. K. P. Singh, A. Mishra, T. Shami, J. Inorg. Organomet. Polym Mater. 28 (2018) 1.10.1007/s10904-017-0690-xSuche in Google Scholar

28. W. Eisenmenger, M. Haardt, Solid State Commun. 41 (1982) 917.10.1016/0038-1098(82)91235-2Suche in Google Scholar

29. M. Sharma, G. Madras, S. Bose, Phys. Chem. Chem. Phys. 16 (2014) 14792.10.1039/c4cp01004cSuche in Google Scholar PubMed

30. C. V. S. Reddy, M. Chen, W. Jin, Q. Zhu, W. Chen, S.-I. Mho, J. Appl. Electrochem. 37 (2007) 637.10.1007/s10800-007-9294-4Suche in Google Scholar

31. R. Gregorio, J. Appl. Polym. Sci. 100 (2006) 3272.10.1002/app.23137Suche in Google Scholar

32. R. Gregorio, E. Ueno, J. Mater. Sci. 34 (1999) 4489.10.1023/A:1004689205706Suche in Google Scholar

33. M. Benz, W. B. Euler, J. Appl. Polym. Sci. 89 (2003) 1093.10.1002/app.12267Suche in Google Scholar

34. D. W. Chae, S. M. Hong, Macromol. Res. 19 (2011) 326.10.1007/s13233-011-0403-1Suche in Google Scholar

35. A. Salimi, A. Yousefi, J. Polym. Sci. Part B: Polym. Phys. 42 (2004) 3487.10.1002/polb.20223Suche in Google Scholar

36. A. J. Lovinger, Macromol. 15 (1982) 40.10.1021/ma00229a008Suche in Google Scholar

37. G. Prasad, P. Sathiyanathan, A. A. Prabu, K. J. Kim, Macromol. Res. 25 (2017) 981.10.1007/s13233-017-5127-4Suche in Google Scholar

38. F. He, S. Lau, H. L. Chan, J. Fan, Adv. Mater. 21 (2009) 710.10.1002/adma.200801758Suche in Google Scholar

39. H. M. Correia, M. M. Ramos, Comp. Mater. Sci. 33 (2005) 224.10.1016/j.commatsci.2004.12.040Suche in Google Scholar

40. K. M. Kim, W. S. Jeon, I. J. Chung, S. H. Chang, J. Power Sources. 83 (1999) 108.10.1016/S0378-7753(99)00281-5Suche in Google Scholar

41. K. Terashita, K. Miyanami, Adv. Powder Technol. 13 (2002) 201.10.1163/156855202760166541Suche in Google Scholar

42. H. Zheng, L. Tan, G. Liu, X. Song, V. S. Battaglia, J. Power Sources. 208 (2012) 52.10.1016/j.jpowsour.2012.02.001Suche in Google Scholar

43. D. Liu, L.-C. Chen, T.-J. Liu, T. Fan, E.-Y. Tsou, C. Tiu, Adv. Chem. Eng. Sci. 4 (2014) 515.10.4236/aces.2014.44053Suche in Google Scholar

44. G. Liu, H. Zheng, A. Simens, A. Minor, X. Song, V. Battaglia, J. Electrochem. Soc. 154 (2007) A1129.10.1149/1.2792293Suche in Google Scholar

45. G. Liu, H. Zheng, S. Kim, Y. Deng, A. Minor, X. Song, V. Battaglia, J. Electrochem. Soc. 155 (2008) A887.10.1149/1.2976031Suche in Google Scholar

46. H. Zheng, R. Yang, G. Liu, X. Song, V. S. Battaglia, J. Phys. Chem. C. 116 (2012) 4875.10.1021/jp208428wSuche in Google Scholar

47. P. A. Dowben, L. G. Rosa, C. C. Ilie, Z. Phys. Chem. 222 (2008) 755.10.1524/zpch.2008.6007Suche in Google Scholar

48. B. Wang, X. Gong, J. Li, Y. Shang, D. Shi, J. de Claville Christiansen, D. Yu, S. Jiang, J. Polym. Res. 22 (2015) 244.10.1007/s10965-015-0889-xSuche in Google Scholar

49. P. Martins, A. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39 (2014) 683.10.1016/j.progpolymsci.2013.07.006Suche in Google Scholar

50. R. Gregorio Jr., Rinaldo, M. Cestari, J. Polym. Sci. Part B: Polym. Phys. 32 (1994) 859.10.1002/polb.1994.090320509Suche in Google Scholar

51. B.-E. El Mohajir, N. Heymans, Polymer. 42 (2001) 5661.10.1016/S0032-3861(01)00064-7Suche in Google Scholar

52. B. Mohammadi, A. A. Yousefi, S. M. Bellah, Polym. Test. 26 (2007) 42.10.1016/j.polymertesting.2006.08.003Suche in Google Scholar

53. Y. You, H. Celio, J. Li, A. Dolocan, A. Manthiram, Angew. Chem. Int. Ed. 57 (2018) 6480.10.1002/anie.201801533Suche in Google Scholar PubMed

54. D. Mohanty, K. Dahlberg, D. M. King, L. A. David, A. S. Sefat, D. L. Wood, C. Daniel, S. Dhar, V. Mahajan, M. Lee, Sci. Rep. 6 (2016) 26532.10.1038/srep26532Suche in Google Scholar PubMed PubMed Central

55. A. Vinogradov, F. Holloway, Ferroelectr. 226 (1999) 169.10.1080/00150199908230298Suche in Google Scholar

Received: 2018-11-21
Accepted: 2019-06-27
Published Online: 2020-02-28
Published in Print: 2020-03-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1343/html
Button zum nach oben scrollen