Thiadiazole-2-Thiol-5-Thione and 2,5-Dimercapto-1,3,4-Thiadiazol Tautomerism, Conformational Stability, Vibrational Assignments, Inhibitor Efficiency and Quantum Chemical Calculations
-
Muhammad H. Esmaiel
Abstract
Raman (3700–100 cm−1) and infrared (4000–400 cm−1) spectra of 2,5-Dimercapto-1,3,4-thiadiazol (DMTD) were recorded in the solid phase. Six structures (1–6) were initially proposed for DMTD as a result of thiol-thione tautomerism and internal rotation(s) of thiol group(s) around the C–S bond. Quantum chemical calculations were carried out for an isolated molecule (1–6) using density functional theory (B3LYP) and ab initio MP2(full) methods utilizing 6-31G(d) and 6-311++G(d,p) basis sets which favor thiol-thione tautomerism (structure 4). Relaxed potential energy surface scans of structure 4 revealed an additional conformer (the thiol group is out-of-plane, structure 7) using the aforementioned methods at 6-311++G(d,p) basis set. For additional verification, plane-wave solid state calculations were carried out at PW91 and PBEsol came out in favor of conformer 7. This is in agreement with the computed/observed SH in-plane bending of S-7 (959/941 cm−1) rather than the one estimated at (880 cm−1) for S-4. Moreover, the observed split IR/Raman bands were found consistent with solid state calculated frequencies of S-7 assuming two molecules per unit cell bonded via H-bonding intermolecular interactions. Aided by vibrational frequency calculations, normal coordinate analysis, force constants and potential energy distributions (PEDs), a complete vibrational assignment for the observed IR and Raman bands is proposed herein. Furthermore, we have estimated the frontier molecular orbitals and atomic charges to account for the corrosion inhibition efficiency of DMTD along with its binding sites to the metal surface. Our results are discussed herein and compared to similar molecules whenever appropriate.
Acknowledgement
TAM sincerely thanks Professor James R. Durig, Chemistry Department, College of Arts and Sciences, University of Missouri, Kansas City, MO 64110, USA, for giving him the opportunity to use G- and F-matrix programs to calculate FCs in internal coordinates and PEDs.
References
1. N. Vasimalai, S. A. John, Analyst 137 (2012) 3349.10.1039/c2an35190kSearch in Google Scholar PubMed
2. X. He, Z. Su, Q. Xie, C. Chen, Y. Fu, L. Chen, Y. Liu, M. Ma, L. Deng, D. Qin, Y. Luo, S. Yao, Microchim. Acta 173 (2011) 95.10.1007/s00604-010-0541-8Search in Google Scholar
3. M. J. Ahmed, I. Jahan, S. Banoo, Anal. Sci. 18 (2002) 805.10.2116/analsci.18.805Search in Google Scholar PubMed
4. Y. Fu, P. Li, L. Bu, T. Wang, Q. Xie, J. Chen, S. Yao, Anal. Chem. 83 (2011) 6511.10.1021/ac200471vSearch in Google Scholar PubMed
5. Y. Fu, C. Zou, Q. Xie, X. Xu, C. Chen, W. Deng, S. Yao, J. Phys. Chem. B 113 (2009) 1332.10.1021/jp807337fSearch in Google Scholar PubMed
6. Ł. Popiołek, U. Kosikowska, M. Dobosz, A. Malm, Phosphorus Sulfur Silicon Relat. Elem. 187 (2012) 468.10.1080/10426507.2011.625511Search in Google Scholar
7. N. S. Jumat Salimon, E. Yousif, A. Hameed, H. Ibraheem, Aust. J. Basic Appl. Sci. 4 (2010/7) 6.Search in Google Scholar
8. N. Rezki, A. Al-Yahyawi, S. Bardaweel, F. Al-Blewi, M. Aouad, Molecules 20 (2015) 16048.10.3390/molecules200916048Search in Google Scholar PubMed PubMed Central
9. A. L. Squissato, W. P. Silva, A. T. S. Del Claro, D. P. Rocha, R. M. Dornellas, E. M. Richter, C. W. Foster, C. E. Banks, R. A. A. Munoz, Talanta 174 (2017) 420.10.1016/j.talanta.2017.06.042Search in Google Scholar PubMed
10. T. T. Qin, J. Li, H. Q. Luo, M. Li, N. B. Li, Corros. Sci. 53 (2011) 1072.10.1016/j.corsci.2010.12.002Search in Google Scholar
11. W. Chen, H. Q. Luo, N. B. Li, Corros. Sci. 53 (2011) 3356.10.1016/j.corsci.2011.06.013Search in Google Scholar
12. X. Yang, Y. Huang, G. Liu, J. Liu, L. Ma, X. Niu, X. Qu, J. Taiwan Inst. Chem. E. 93 (2018) 109.10.1016/j.jtice.2018.09.022Search in Google Scholar
13. Y. El Bakri, L. Guo, E. H. Anouar, E. M. Essassi, J. Mol. Liq. 274 (2019) 759.10.1016/j.molliq.2018.11.048Search in Google Scholar
14. N. Vasimalai, G. Sheeba, S. A. John, J. Hazard Mater 213–214 (2012) 193.10.1016/j.jhazmat.2012.01.079Search in Google Scholar
15. P. Kannan, S. A. John, Anal. Biochem. 386 (2009) 65.10.1016/j.ab.2008.11.043Search in Google Scholar
16. L. Jin, G. Wang, X. Li, L. Li, J. Appl. Electrochem. 41 (2011) 377.10.1007/s10800-010-0246-zSearch in Google Scholar
17. Y. Kiya, G. R. Hutchison, J. C. Henderson, T. Sarukawa, O. Hatozaki, N. Oyama, H. D. Abruña, Langmuir 22 (2006) 10554.10.1021/la061213qSearch in Google Scholar
18. J. Gao, M. A. Lowe, S. Conte, S. E. Burkhardt, H. D. Abruña, Chem. Eur. J. 18 (2012) 8521.10.1002/chem.201103535Search in Google Scholar
19. H. G. M. Edwards, A. F. Johnson, E. E. Lawson, J. Mol. Struct. 351 (1995) 51.10.1016/0022-2860(94)08485-ZSearch in Google Scholar
20. J. M. Pope, T. Sato, E. Shoji, D. A. Buttry, T. Sotomura, N. Oyama, J. Power Sources 68 (1997) 739.10.1016/S0378-7753(96)02598-0Search in Google Scholar
21. E. E. Lawson, H. G. M. Edwards, A. F. Johnson, J. Raman Spectrosc 26 (1995) 617.10.1002/jrs.1250260806Search in Google Scholar
22. F. Hipler, R. A. Fischer, J. Müller, J. Chem. Soc. Perkin Trans. 2 (2002) 1620.10.1039/B201887JSearch in Google Scholar
23. S. Millefiori, A. Millefiori, J. Mol. Struct. Theochem 151 (1987) 373.10.1016/0166-1280(87)85072-8Search in Google Scholar
24. K. L. Williamson, J. D. Roberts, Heterocycles 11 (1978) 12.10.3987/S(N)-1978-01-0121Search in Google Scholar
25. A. R. Katritzky, Z. Wang, R. J. Offerman, J. Heterocycl. Chem. 27 (1990) 139.10.1002/jhet.5570270204Search in Google Scholar
26. N. Maiti, R. Chadha, A. Das, S. Kapoor, RSC Adv. 6 (2016) 62529.10.1039/C6RA10404ESearch in Google Scholar
27. J. K. Mistry, R. Dawes, A. Choudhury, M. R. Van De Mark, J. Heterocycl. Chem. 51 (2014) 747.10.1002/jhet.1903Search in Google Scholar
28. J. Bats, Acta Crystallogr. B 32 (1976) 2866.10.1107/S0567740876009059Search in Google Scholar
29. A. D. Becke, Phys. Rev. A 38 (1988) 3098.10.1103/PhysRevA.38.3098Search in Google Scholar
30. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785.10.1103/PhysRevB.37.785Search in Google Scholar
31. C. Møller, M. S. Plesset, Phys. Rev. 46 (1934) 618.10.1103/PhysRev.46.618Search in Google Scholar
32. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 46 (1992) 6671.10.1103/PhysRevB.46.6671Search in Google Scholar PubMed
33. J. P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244.10.1103/PhysRevB.45.13244Search in Google Scholar
34. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100 (2008) 136406.10.1103/PhysRevLett.100.136406Search in Google Scholar PubMed
35. I. B. Obot, N. O. Obi-Egbedi, Colloids Surf. A 330 (2008) 207.10.1016/j.colsurfa.2008.07.058Search in Google Scholar
36. S. Benabid, T. Douadi, S. Issaadi, C. Penverne, S. Chafaa, Measurement 99 (2017) 53.10.1016/j.measurement.2016.12.022Search in Google Scholar
37. F. E.-T. Heakal, M. M. Osman, M. A. Deyab, A. E. Elkholy, Z. Phys. Chem. 232 (2017) 13.10.1515/zpch-2017-0949Search in Google Scholar
38. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. O. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, D. N. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford, CT, USA, (2009).Search in Google Scholar
39. P. Pulay, Mol. Phys. 17 (1969) 197.10.1080/00268976900100941Search in Google Scholar
40. J. Clark Stewart, D. Segall Matthew, J. Pickard Chris, J. Hasnip Phil, I. J. Probert Matt, K. Refson, C. Payne Mike, Z. Kristallogr. Cryst. Mater. 220 (2005) 567.10.1524/zkri.220.5.567.65075Search in Google Scholar
41. D. R. Hamann, M. Schlüter, C. Chiang, Phys. Rev. Lett. 43 (1979) 1494.10.1103/PhysRevLett.43.1494Search in Google Scholar
42. B. G. Pfrommer, M. Côté, S. G. Louie, M. L. Cohen, J. Comput. Phys. 131 (1997) 233.10.1006/jcph.1996.5612Search in Google Scholar
43. K. Refson, P. R. Tulip, S. J. Clark, Phys. Rev. B 73 (2006) 155114.10.1103/PhysRevB.73.155114Search in Google Scholar
44. T. Koopmans, Physica 1 (1934) 104.10.1016/S0031-8914(34)90011-2Search in Google Scholar
45. R. G. Parr, L. V. Szentpály, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922.10.1021/ja983494xSearch in Google Scholar
46. R. G. Pearson, Inorg. Chem. 27 (1988) 734.10.1021/ic00277a030Search in Google Scholar
47. Z. Zhang, N. Tian, X. Li, L. Zhang, L. Wu, Y. Huang, Appl. Surf. Sci. 357 (2015) 845.10.1016/j.apsusc.2015.09.092Search in Google Scholar
48. J. B. Foresman, A. Frisch, Æ. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Wallingford, USA (2015).Search in Google Scholar
49. C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Crystallogr. 41 (2008) 466.10.1107/S0021889807067908Search in Google Scholar
50. W. M. Haynes, CRC Handbook of Chemistry and Physics, 97th Edition, CRC Press, Boca Raton (2016).10.1201/9781315380476Search in Google Scholar
51. A. Bondi, J. Phys. Chem. 68 (1964) 441.10.1021/j100785a001Search in Google Scholar
52. J. E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity, Harper Collins College Publishers, New York, NY (1983).Search in Google Scholar
53. G. A. Guirgis, Y. D. Hsu, A. C. Vlaservich, H. D. Stidham, J. R. Durig, J. Mol. Struct. Theochem 378 (1996) 83.10.1016/S0166-1280(96)91003-9Search in Google Scholar
54. E. B. Wilson, J. C. Decius, P. C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, Dover Publications, New York (2012).Search in Google Scholar
55. H. J. Schachtshneider, Vibrational Analysis of Polyatomic Molecules, Parts V and VI, Technical Report Nos. 231 and 57, Shell Development, Emeryville, California (1964/1965).Search in Google Scholar
56. D. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems, John Wiley & Sons, Inc., New York (2004).Search in Google Scholar
57. P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggs, A. Vargha, J. Am. Chem. Soc. 105 (1983) 7037.10.1021/ja00362a005Search in Google Scholar
58. J. Baker, A. A. Jarzecki, P. Pulay, J. Phys. Chem. A 102 (1998) 1412.10.1021/jp980038mSearch in Google Scholar
59. M. S. Afifi, R. S. Farag, I. A. Shaaban, L. D. Wilson, W. M. Zoghaib, T. A. Mohamed, Spectrochim. Acta A Mol. Biomol. Spectrosc. 111 (2013) 277.10.1016/j.saa.2013.04.004Search in Google Scholar
60. I. A. Shaaban, A. E. Hassan, A. M. Abuelela, W. M. Zoghaieb, T. A. Mohamed, J. Mol. Struct. 1103 (2016) 70.10.1016/j.molstruc.2015.09.007Search in Google Scholar
61. Y. B. Shankar Rao, M. V. S. Prasad, N. Udaya Sri, V. Veeraiah, J. Mol. Struct. 1108 (2016) 567.10.1016/j.molstruc.2015.12.008Search in Google Scholar
62. S. Meng, Y. Zhao, J. Xue, X. Zheng, Spectrochim. Acta A Mol. Biomol. Spectrosc. 190 (2018) 478.10.1016/j.saa.2017.09.053Search in Google Scholar
63. N. B. Colthup, L. H. Daly, S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Elsevier Science, Academic Press, New York (1990).Search in Google Scholar
64. P. Senet, Chem. Phys. Lett. 275 (1997) 527.10.1016/S0009-2614(97)00799-9Search in Google Scholar
65. D. K. Yadav, B. Maiti, M. A. Quraishi, Corros. Sci. 52 (2010) 3586.10.1016/j.corsci.2010.06.030Search in Google Scholar
66. S. Martinez, Mater. Chem. Phys. 77 (2003) 97.10.1016/S0254-0584(01)00569-7Search in Google Scholar
67. G. Gece, Corros. Sci. 50 (2008) 2981.10.1016/j.corsci.2008.08.043Search in Google Scholar
68. N. Khalil, Electrochim. Acta 48 (2003) 2635.10.1016/S0013-4686(03)00307-4Search in Google Scholar
69. M. S. Masoud, M. K. Awad, M. A. Shaker, M. M. T. El-Tahawy, Corros. Sci. 52 (2010) 2387.10.1016/j.corsci.2010.04.011Search in Google Scholar
70. F. Zhang, Y. Tang, Z. Cao, W. Jing, Z. Wu, Y. Chen, Corros. Sci. 61 (2012) 1.10.1016/j.corsci.2012.03.045Search in Google Scholar
71. A. Aloysius, R. Ramanathan, A. Christy, S. Baskaran, N. Antony, Egypt. J. Petrol. 27 (2018) 371.10.1016/j.ejpe.2017.06.003Search in Google Scholar
72. A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 83 (1985) 735.10.1063/1.449486Search in Google Scholar
73. B. Geboes, K. Baert, A. Hubin, T. Breugelmans, Electrochim. Acta 156 (2015) 308.10.1016/j.electacta.2015.01.036Search in Google Scholar
74. U. Ghani, N. Ullah, Bioorg. Med. Chem. 18 (2010) 4042.10.1016/j.bmc.2010.04.021Search in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/zpch-2018-1346).
©2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The Effect of Crystalline Microstructure of PVDF Binder on Mechanical and Electrochemical Performance of Lithium-Ion Batteries Cathode
- Mechanistic Study on Surface Tension of Binary and Ternary Mixtures Containing Choline Chloride, Ethylene Glycol and Water (Components of Aqueous Solutions of a Deep Eutectic Solvent, Ethaline)
- Thiadiazole-2-Thiol-5-Thione and 2,5-Dimercapto-1,3,4-Thiadiazol Tautomerism, Conformational Stability, Vibrational Assignments, Inhibitor Efficiency and Quantum Chemical Calculations
- The Thermodynamic and pH Metric Binding Studies of Cu+2 Ions with Egg Protein by Spectrometric and Diffusion Current Techniques
- Adsorption of 2,4-Dichlorophenoxyacetic Acid from Aqueous Solution Using Carbonized Chest Nut as Low Cost Adsorbent: Kinetic and Thermodynamic
- The Kinetics and Equilibrium Thermodynamics Study on the Removal of Direct Blue and Titan Yellow Dyes from Aqueous Media by Modified Rice Husk Char
- Investigation of Dielectric Properties, Electric Modulus and Conductivity of the Au/Zn-Doped PVA/n-4H-SiC (MPS) Structure Using Impedance Spectroscopy Method
- Finding Solvent for Polyamide 11 Using a Computer Software
- Phytochemical Synthesis of Silver Nanoparticles Using Anthemis Nobilis Extract and Its Antibacterial Activity
Articles in the same Issue
- Frontmatter
- The Effect of Crystalline Microstructure of PVDF Binder on Mechanical and Electrochemical Performance of Lithium-Ion Batteries Cathode
- Mechanistic Study on Surface Tension of Binary and Ternary Mixtures Containing Choline Chloride, Ethylene Glycol and Water (Components of Aqueous Solutions of a Deep Eutectic Solvent, Ethaline)
- Thiadiazole-2-Thiol-5-Thione and 2,5-Dimercapto-1,3,4-Thiadiazol Tautomerism, Conformational Stability, Vibrational Assignments, Inhibitor Efficiency and Quantum Chemical Calculations
- The Thermodynamic and pH Metric Binding Studies of Cu+2 Ions with Egg Protein by Spectrometric and Diffusion Current Techniques
- Adsorption of 2,4-Dichlorophenoxyacetic Acid from Aqueous Solution Using Carbonized Chest Nut as Low Cost Adsorbent: Kinetic and Thermodynamic
- The Kinetics and Equilibrium Thermodynamics Study on the Removal of Direct Blue and Titan Yellow Dyes from Aqueous Media by Modified Rice Husk Char
- Investigation of Dielectric Properties, Electric Modulus and Conductivity of the Au/Zn-Doped PVA/n-4H-SiC (MPS) Structure Using Impedance Spectroscopy Method
- Finding Solvent for Polyamide 11 Using a Computer Software
- Phytochemical Synthesis of Silver Nanoparticles Using Anthemis Nobilis Extract and Its Antibacterial Activity