Abstract
In this work, green synthesis of silver nanoparticles is described by phytochemical reducing silver nitrate aqueous solution using Anthemis nobilis. For this purpose, Anthemis nobilis extract was used for the synthesis of silver nanoparticles as both surfactant and reducing agent. Green synthesis method is a good alternative to physical and chemical methods, since it is fast, simple, environmentally-friendly and economic. The produced nanoparticles are identified using FE-SEM, EDX, and FT-IR and Uv/Vis techniques. Formation of silver nanoparticles is verified in 430–420 nm range. Reduction of silver ions by hydroxyl functional group is also confirmed by FT-IR device. EDX device confirms the presence of a peak for Ag element without any impurity peak. Silver nanoparticles are identified by FE-SEM device and found to have average size between 17 and 42 nm. Also, the antibacterial activity of the synthesized nanoparticles is compared with that of staphyloccusaureus and pseudomonasa aeruginosa and the maximum inhibitory activity against the bacteria is obtained using 1 mM nitrate solution.
Acknowledgement
The authors would like to thank the laboratory of Islamic Azad University, Science and Research Branch, for providing the required laboratory equipment. We also acknowledge Ms. Shima Shakuri Asl, supervisor of FT-IR and Uv/Vis devices, as well as Razi Applied Science Foundation for providing us with FE-SEM and EDX devices. Finally, the authors should express their gratitude to Mr. Behnam Rahmani, head of Electron Microscopy laboratory.
References
1. W. Jahn, J. Struct. Biol. 127 (1999) 106.10.1006/jsbi.1999.4123Suche in Google Scholar PubMed
2. N. Saifuddin, C. W. Wong, A. A. Yasumira, J. Chem. 6 (2009) 61.Suche in Google Scholar
3. C. J. Orendorff, C. J. Murphy, J. Phys. Chem. B 110 (2006) 3990.10.1021/jp0570972Suche in Google Scholar PubMed
4. A. Leela, M. Vivekanandan, African J. Biotec. 7 (2008) 1121.Suche in Google Scholar
5. C. Ruhmlieb, A. Rieckmann, C. Strelow, T. Kipp, A. Mews, Z. Phys. Chem. 232 (2018) 1295.10.1515/zpch-2018-1191Suche in Google Scholar
6. V. Parashar, R. Parashar, B. Sharma, A. C. Pandey, Dig. J. Nanomater. Biostruct. 4 (2009) 45.Suche in Google Scholar
7. I. Mesgarzadeh, A. R. Akbarzadeh, R. Rahimi, A. Maleki, Z. Phys. Chem. 232 (2018) 209.10.1515/zpch-2017-0970Suche in Google Scholar
8. T. Kodanek, A. Freytag, A. Schlosser, S. Naskar, T. Härtling, D. Dorfs, N. C. Bigall, Z. Phys. Chem. 232 (2018) 1675.10.1515/zpch-2017-1045Suche in Google Scholar
9. C. Heard, A. Shayeghi, R. Schäfer, R. Johnston, Z. Phys. Chem. 230 (2016) 955.10.1515/zpch-2015-0721Suche in Google Scholar
10. S. Christau, J. Genzer, R. von Klitzing, Z. Phys. Chem. 229 (2015) 1089.10.1515/zpch-2014-0573Suche in Google Scholar
11. R. Singh, H. S. Nalwa, J. Biomed. Nanotechnol. 7 (2011) 489.10.1166/jbn.2011.1324Suche in Google Scholar PubMed
12. M. Rai, A. Yadav, A. Gade, Biotechnol. Adv. 27 (2009) 76.10.1016/j.biotechadv.2008.09.002Suche in Google Scholar PubMed
13. J. L. Elechiguerra, J. L. Burt, J. R. Morones, A. Camacho-Bragado, X. Gao, H. H. Lara, M. J. Yacaman, J. Nanobiotec. 3 (2005) 1.10.1186/1477-3155-3-6Suche in Google Scholar PubMed PubMed Central
14. R. M. Crooks, B. I. Lemon III, L. Sun, L. K. Yeung, M. Zhao, In: Dendrimers III, Springer Berlin Heidelberg, Germany (2001), P. 81–135.10.1007/3-540-44924-8_3Suche in Google Scholar
15. D. I. Gittins, D. Bethell, R. J. Nichols, D. J. Schiffrin, J. Mater. 10 (2000) 79.10.1039/a902960eSuche in Google Scholar
16. S. B. Khalili, A. R. Sardarian, Monatsh. Chem. 143 (2012) 841.10.1007/s00706-011-0647-7Suche in Google Scholar
17. V. P. Stepanov, V. I. Minchenko, Z. Phys. Chem. 231 (2017) 971.10.1515/zpch-2015-0744Suche in Google Scholar
18. J. Lin, W. L. Zhou, C. J. O’Connor, In: Cluster Nanostruct. Interfac. World Scientific, Singapore (2000), P. 405–410.10.1142/9789812793805_0051Suche in Google Scholar
19. K. Esumi, T. Tano, K. Torigoe, K. Meguro, Chem. Mater. 2 (1990) 564.10.1021/cm00011a019Suche in Google Scholar
20. A. Henglein, Langmuir 17 (2001) 2329.10.1021/la001081fSuche in Google Scholar
21. L. Rodriguez-Sanchez, M. C. Blanco, M. A. Lopez-Quintela, J. Phys. Chem. B 104 (2000) 9683.10.1021/jp001761rSuche in Google Scholar
22. M. Saeed, M. A. Jamal, N. Akram, T. H. Bokhari, U. Afaq, Z. Phys. Chem 233 (2008) 1047.10.1515/zpch-2018-1226Suche in Google Scholar
23. J. Zhu, S. Liu, O. Palchik, Y. Koltypin, A. Gedanken, Langmuir 16 (2000) 6396.10.1021/la991507uSuche in Google Scholar
24. I. Pastoriza-Santos, L. M. Liz-Marzán, Langmuir 18 (2002) 2888.10.1021/la015578gSuche in Google Scholar
25. N. A. Begum, S. Mondal, S. Basu, R. A. Laskar, D. Mandal, Colloids Surf. B 71 (2009) 113.10.1016/j.colsurfb.2009.01.012Suche in Google Scholar PubMed
26. H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, A. Colloids Surf. A 339 (2009) 134.10.1016/j.colsurfa.2009.02.008Suche in Google Scholar
27. J. Y. Song, B. S. Kim, Bioprocess. Biosyst. Eng. 32 (2009) 79.10.1007/s00449-008-0224-6Suche in Google Scholar PubMed
28. N. Vigneshwaran, N. M. Ashtaputre, P. V. Varadarajan, R. P. Nachane, K. M. Paralikar, R. H. Balasubramanya, Mater. Let. 61 (2007) 1413.10.1016/j.matlet.2006.07.042Suche in Google Scholar
29. P. Mohanpuria, N. K. Rana, S. K. Yadav, J. Nanopart. Res. 10 (2008) 507.10.1007/s11051-007-9275-xSuche in Google Scholar
30. S. S. Shankar, A. Rai, A. Ahmad, M. Sastry, J. Colloid. Interface. Sci. 275 (2004) 496.10.1016/j.jcis.2004.03.003Suche in Google Scholar PubMed
31. D. Jain, H. K. Daima, S. Kachhwaha, S. L. Kothari, Dig. J. Nanomater. Biostruct. 4 (2009) 557.Suche in Google Scholar
32. C. Elsner, D. Hintzen, A. Prager, K. R. Siefermann, B. Abel, Z. Phys. Chem. 229 (2015) 427.10.1515/zpch-2014-0639Suche in Google Scholar
33. M. Karimi, S. Davoudizadeh, S. Bahadorikhalili, K. Khezri, Z. Phys. Chem. 233 (2018) 393.10.1515/zpch-2018-1202Suche in Google Scholar
34. N. Saifuddin, C. W. Wong, A. A. Yasumira, Aust. J. Chem. 6 (2009) 61.10.1155/2009/734264Suche in Google Scholar
35. A. Gültekin, S. Sönmezoğlu, Z. Phys. Chem. 228 (2014) 649.10.1515/zpch-2014-0471Suche in Google Scholar
36. A. Shahraki, S. Bahadorikhalili, M. Hashemzaei, M. Hajinezhad, A. Afsharimoghaddam, F. Sarani, O. Tajrobekar, Biosci. Biotechnol. Res Commun 10 (2017) 623.10.21786/bbrc/10.4/4Suche in Google Scholar
37. I. Willner, B. Basnar, B. Willner, Febs J. 274 (2007) 302.10.1111/j.1742-4658.2006.05602.xSuche in Google Scholar PubMed
38. A. Stephen, S. Seethalakshmi, J. Nanosci. 2013 (2013) 6.10.1155/2013/126564Suche in Google Scholar
39. P. V. AshaRani, G. Low Kah Mun, M. P. Hande, S. Valiyaveettil, ACS nano 3 (2008) 279.10.1021/nn800596wSuche in Google Scholar PubMed
40. K. Bethke, S. Palantöken, V. Andrei, M. Roß, V. S. Raghuwanshi, F. Kettemann, K. Greis, T. T. Ingber, J. B. Stückrath, S. Valiyaveettil, K. Rademann, Adv. Funct. Mater. 28 (2018) 1800409. DOI: https://doi.org/10.1002/adfm.201800409.10.1002/adfm.201800409Suche in Google Scholar
41. S. L. Percival, P. G. Bowler, D. Russell, J. Hospital Infect. 60 (2005) 1.10.1016/j.jhin.2004.11.014Suche in Google Scholar PubMed
©2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- The Effect of Crystalline Microstructure of PVDF Binder on Mechanical and Electrochemical Performance of Lithium-Ion Batteries Cathode
- Mechanistic Study on Surface Tension of Binary and Ternary Mixtures Containing Choline Chloride, Ethylene Glycol and Water (Components of Aqueous Solutions of a Deep Eutectic Solvent, Ethaline)
- Thiadiazole-2-Thiol-5-Thione and 2,5-Dimercapto-1,3,4-Thiadiazol Tautomerism, Conformational Stability, Vibrational Assignments, Inhibitor Efficiency and Quantum Chemical Calculations
- The Thermodynamic and pH Metric Binding Studies of Cu+2 Ions with Egg Protein by Spectrometric and Diffusion Current Techniques
- Adsorption of 2,4-Dichlorophenoxyacetic Acid from Aqueous Solution Using Carbonized Chest Nut as Low Cost Adsorbent: Kinetic and Thermodynamic
- The Kinetics and Equilibrium Thermodynamics Study on the Removal of Direct Blue and Titan Yellow Dyes from Aqueous Media by Modified Rice Husk Char
- Investigation of Dielectric Properties, Electric Modulus and Conductivity of the Au/Zn-Doped PVA/n-4H-SiC (MPS) Structure Using Impedance Spectroscopy Method
- Finding Solvent for Polyamide 11 Using a Computer Software
- Phytochemical Synthesis of Silver Nanoparticles Using Anthemis Nobilis Extract and Its Antibacterial Activity
Artikel in diesem Heft
- Frontmatter
- The Effect of Crystalline Microstructure of PVDF Binder on Mechanical and Electrochemical Performance of Lithium-Ion Batteries Cathode
- Mechanistic Study on Surface Tension of Binary and Ternary Mixtures Containing Choline Chloride, Ethylene Glycol and Water (Components of Aqueous Solutions of a Deep Eutectic Solvent, Ethaline)
- Thiadiazole-2-Thiol-5-Thione and 2,5-Dimercapto-1,3,4-Thiadiazol Tautomerism, Conformational Stability, Vibrational Assignments, Inhibitor Efficiency and Quantum Chemical Calculations
- The Thermodynamic and pH Metric Binding Studies of Cu+2 Ions with Egg Protein by Spectrometric and Diffusion Current Techniques
- Adsorption of 2,4-Dichlorophenoxyacetic Acid from Aqueous Solution Using Carbonized Chest Nut as Low Cost Adsorbent: Kinetic and Thermodynamic
- The Kinetics and Equilibrium Thermodynamics Study on the Removal of Direct Blue and Titan Yellow Dyes from Aqueous Media by Modified Rice Husk Char
- Investigation of Dielectric Properties, Electric Modulus and Conductivity of the Au/Zn-Doped PVA/n-4H-SiC (MPS) Structure Using Impedance Spectroscopy Method
- Finding Solvent for Polyamide 11 Using a Computer Software
- Phytochemical Synthesis of Silver Nanoparticles Using Anthemis Nobilis Extract and Its Antibacterial Activity