Startseite Phytochemical Synthesis of Silver Nanoparticles Using Anthemis Nobilis Extract and Its Antibacterial Activity
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Phytochemical Synthesis of Silver Nanoparticles Using Anthemis Nobilis Extract and Its Antibacterial Activity

  • Saba Ghamipoor , Faeze Fayyazi EMAIL logo und Saeed Bahadorikhalili
Veröffentlicht/Copyright: 9. August 2019

Abstract

In this work, green synthesis of silver nanoparticles is described by phytochemical reducing silver nitrate aqueous solution using Anthemis nobilis. For this purpose, Anthemis nobilis extract was used for the synthesis of silver nanoparticles as both surfactant and reducing agent. Green synthesis method is a good alternative to physical and chemical methods, since it is fast, simple, environmentally-friendly and economic. The produced nanoparticles are identified using FE-SEM, EDX, and FT-IR and Uv/Vis techniques. Formation of silver nanoparticles is verified in 430–420 nm range. Reduction of silver ions by hydroxyl functional group is also confirmed by FT-IR device. EDX device confirms the presence of a peak for Ag element without any impurity peak. Silver nanoparticles are identified by FE-SEM device and found to have average size between 17 and 42 nm. Also, the antibacterial activity of the synthesized nanoparticles is compared with that of staphyloccusaureus and pseudomonasa aeruginosa and the maximum inhibitory activity against the bacteria is obtained using 1 mM nitrate solution.

Acknowledgement

The authors would like to thank the laboratory of Islamic Azad University, Science and Research Branch, for providing the required laboratory equipment. We also acknowledge Ms. Shima Shakuri Asl, supervisor of FT-IR and Uv/Vis devices, as well as Razi Applied Science Foundation for providing us with FE-SEM and EDX devices. Finally, the authors should express their gratitude to Mr. Behnam Rahmani, head of Electron Microscopy laboratory.

References

1. W. Jahn, J. Struct. Biol. 127 (1999) 106.10.1006/jsbi.1999.4123Suche in Google Scholar PubMed

2. N. Saifuddin, C. W. Wong, A. A. Yasumira, J. Chem. 6 (2009) 61.Suche in Google Scholar

3. C. J. Orendorff, C. J. Murphy, J. Phys. Chem. B 110 (2006) 3990.10.1021/jp0570972Suche in Google Scholar PubMed

4. A. Leela, M. Vivekanandan, African J. Biotec. 7 (2008) 1121.Suche in Google Scholar

5. C. Ruhmlieb, A. Rieckmann, C. Strelow, T. Kipp, A. Mews, Z. Phys. Chem. 232 (2018) 1295.10.1515/zpch-2018-1191Suche in Google Scholar

6. V. Parashar, R. Parashar, B. Sharma, A. C. Pandey, Dig. J. Nanomater. Biostruct. 4 (2009) 45.Suche in Google Scholar

7. I. Mesgarzadeh, A. R. Akbarzadeh, R. Rahimi, A. Maleki, Z. Phys. Chem. 232 (2018) 209.10.1515/zpch-2017-0970Suche in Google Scholar

8. T. Kodanek, A. Freytag, A. Schlosser, S. Naskar, T. Härtling, D. Dorfs, N. C. Bigall, Z. Phys. Chem. 232 (2018) 1675.10.1515/zpch-2017-1045Suche in Google Scholar

9. C. Heard, A. Shayeghi, R. Schäfer, R. Johnston, Z. Phys. Chem. 230 (2016) 955.10.1515/zpch-2015-0721Suche in Google Scholar

10. S. Christau, J. Genzer, R. von Klitzing, Z. Phys. Chem. 229 (2015) 1089.10.1515/zpch-2014-0573Suche in Google Scholar

11. R. Singh, H. S. Nalwa, J. Biomed. Nanotechnol. 7 (2011) 489.10.1166/jbn.2011.1324Suche in Google Scholar PubMed

12. M. Rai, A. Yadav, A. Gade, Biotechnol. Adv. 27 (2009) 76.10.1016/j.biotechadv.2008.09.002Suche in Google Scholar PubMed

13. J. L. Elechiguerra, J. L. Burt, J. R. Morones, A. Camacho-Bragado, X. Gao, H. H. Lara, M. J. Yacaman, J. Nanobiotec. 3 (2005) 1.10.1186/1477-3155-3-6Suche in Google Scholar PubMed PubMed Central

14. R. M. Crooks, B. I. Lemon III, L. Sun, L. K. Yeung, M. Zhao, In: Dendrimers III, Springer Berlin Heidelberg, Germany (2001), P. 81–135.10.1007/3-540-44924-8_3Suche in Google Scholar

15. D. I. Gittins, D. Bethell, R. J. Nichols, D. J. Schiffrin, J. Mater. 10 (2000) 79.10.1039/a902960eSuche in Google Scholar

16. S. B. Khalili, A. R. Sardarian, Monatsh. Chem. 143 (2012) 841.10.1007/s00706-011-0647-7Suche in Google Scholar

17. V. P. Stepanov, V. I. Minchenko, Z. Phys. Chem. 231 (2017) 971.10.1515/zpch-2015-0744Suche in Google Scholar

18. J. Lin, W. L. Zhou, C. J. O’Connor, In: Cluster Nanostruct. Interfac. World Scientific, Singapore (2000), P. 405–410.10.1142/9789812793805_0051Suche in Google Scholar

19. K. Esumi, T. Tano, K. Torigoe, K. Meguro, Chem. Mater. 2 (1990) 564.10.1021/cm00011a019Suche in Google Scholar

20. A. Henglein, Langmuir 17 (2001) 2329.10.1021/la001081fSuche in Google Scholar

21. L. Rodriguez-Sanchez, M. C. Blanco, M. A. Lopez-Quintela, J. Phys. Chem. B 104 (2000) 9683.10.1021/jp001761rSuche in Google Scholar

22. M. Saeed, M. A. Jamal, N. Akram, T. H. Bokhari, U. Afaq, Z. Phys. Chem 233 (2008) 1047.10.1515/zpch-2018-1226Suche in Google Scholar

23. J. Zhu, S. Liu, O. Palchik, Y. Koltypin, A. Gedanken, Langmuir 16 (2000) 6396.10.1021/la991507uSuche in Google Scholar

24. I. Pastoriza-Santos, L. M. Liz-Marzán, Langmuir 18 (2002) 2888.10.1021/la015578gSuche in Google Scholar

25. N. A. Begum, S. Mondal, S. Basu, R. A. Laskar, D. Mandal, Colloids Surf. B 71 (2009) 113.10.1016/j.colsurfb.2009.01.012Suche in Google Scholar PubMed

26. H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, A. Colloids Surf. A 339 (2009) 134.10.1016/j.colsurfa.2009.02.008Suche in Google Scholar

27. J. Y. Song, B. S. Kim, Bioprocess. Biosyst. Eng. 32 (2009) 79.10.1007/s00449-008-0224-6Suche in Google Scholar PubMed

28. N. Vigneshwaran, N. M. Ashtaputre, P. V. Varadarajan, R. P. Nachane, K. M. Paralikar, R. H. Balasubramanya, Mater. Let. 61 (2007) 1413.10.1016/j.matlet.2006.07.042Suche in Google Scholar

29. P. Mohanpuria, N. K. Rana, S. K. Yadav, J. Nanopart. Res. 10 (2008) 507.10.1007/s11051-007-9275-xSuche in Google Scholar

30. S. S. Shankar, A. Rai, A. Ahmad, M. Sastry, J. Colloid. Interface. Sci. 275 (2004) 496.10.1016/j.jcis.2004.03.003Suche in Google Scholar PubMed

31. D. Jain, H. K. Daima, S. Kachhwaha, S. L. Kothari, Dig. J. Nanomater. Biostruct. 4 (2009) 557.Suche in Google Scholar

32. C. Elsner, D. Hintzen, A. Prager, K. R. Siefermann, B. Abel, Z. Phys. Chem. 229 (2015) 427.10.1515/zpch-2014-0639Suche in Google Scholar

33. M. Karimi, S. Davoudizadeh, S. Bahadorikhalili, K. Khezri, Z. Phys. Chem. 233 (2018) 393.10.1515/zpch-2018-1202Suche in Google Scholar

34. N. Saifuddin, C. W. Wong, A. A. Yasumira, Aust. J. Chem. 6 (2009) 61.10.1155/2009/734264Suche in Google Scholar

35. A. Gültekin, S. Sönmezoğlu, Z. Phys. Chem. 228 (2014) 649.10.1515/zpch-2014-0471Suche in Google Scholar

36. A. Shahraki, S. Bahadorikhalili, M. Hashemzaei, M. Hajinezhad, A. Afsharimoghaddam, F. Sarani, O. Tajrobekar, Biosci. Biotechnol. Res Commun 10 (2017) 623.10.21786/bbrc/10.4/4Suche in Google Scholar

37. I. Willner, B. Basnar, B. Willner, Febs J. 274 (2007) 302.10.1111/j.1742-4658.2006.05602.xSuche in Google Scholar PubMed

38. A. Stephen, S. Seethalakshmi, J. Nanosci. 2013 (2013) 6.10.1155/2013/126564Suche in Google Scholar

39. P. V. AshaRani, G. Low Kah Mun, M. P. Hande, S. Valiyaveettil, ACS nano 3 (2008) 279.10.1021/nn800596wSuche in Google Scholar PubMed

40. K. Bethke, S. Palantöken, V. Andrei, M. Roß, V. S. Raghuwanshi, F. Kettemann, K. Greis, T. T. Ingber, J. B. Stückrath, S. Valiyaveettil, K. Rademann, Adv. Funct. Mater. 28 (2018) 1800409. DOI: https://doi.org/10.1002/adfm.201800409.10.1002/adfm.201800409Suche in Google Scholar

41. S. L. Percival, P. G. Bowler, D. Russell, J. Hospital Infect. 60 (2005) 1.10.1016/j.jhin.2004.11.014Suche in Google Scholar PubMed

Received: 2018-08-25
Accepted: 2019-07-15
Published Online: 2019-08-09
Published in Print: 2020-03-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1288/html
Button zum nach oben scrollen