Thiadiazole-2-Thiol-5-Thione and 2,5-Dimercapto-1,3,4-Thiadiazol Tautomerism, Conformational Stability, Vibrational Assignments, Inhibitor Efficiency and Quantum Chemical Calculations
-
Muhammad H. Esmaiel
Abstract
Raman (3700–100 cm−1) and infrared (4000–400 cm−1) spectra of 2,5-Dimercapto-1,3,4-thiadiazol (DMTD) were recorded in the solid phase. Six structures (1–6) were initially proposed for DMTD as a result of thiol-thione tautomerism and internal rotation(s) of thiol group(s) around the C–S bond. Quantum chemical calculations were carried out for an isolated molecule (1–6) using density functional theory (B3LYP) and ab initio MP2(full) methods utilizing 6-31G(d) and 6-311++G(d,p) basis sets which favor thiol-thione tautomerism (structure 4). Relaxed potential energy surface scans of structure 4 revealed an additional conformer (the thiol group is out-of-plane, structure 7) using the aforementioned methods at 6-311++G(d,p) basis set. For additional verification, plane-wave solid state calculations were carried out at PW91 and PBEsol came out in favor of conformer 7. This is in agreement with the computed/observed SH in-plane bending of S-7 (959/941 cm−1) rather than the one estimated at (880 cm−1) for S-4. Moreover, the observed split IR/Raman bands were found consistent with solid state calculated frequencies of S-7 assuming two molecules per unit cell bonded via H-bonding intermolecular interactions. Aided by vibrational frequency calculations, normal coordinate analysis, force constants and potential energy distributions (PEDs), a complete vibrational assignment for the observed IR and Raman bands is proposed herein. Furthermore, we have estimated the frontier molecular orbitals and atomic charges to account for the corrosion inhibition efficiency of DMTD along with its binding sites to the metal surface. Our results are discussed herein and compared to similar molecules whenever appropriate.
Acknowledgement
TAM sincerely thanks Professor James R. Durig, Chemistry Department, College of Arts and Sciences, University of Missouri, Kansas City, MO 64110, USA, for giving him the opportunity to use G- and F-matrix programs to calculate FCs in internal coordinates and PEDs.
References
1. N. Vasimalai, S. A. John, Analyst 137 (2012) 3349.10.1039/c2an35190kSuche in Google Scholar PubMed
2. X. He, Z. Su, Q. Xie, C. Chen, Y. Fu, L. Chen, Y. Liu, M. Ma, L. Deng, D. Qin, Y. Luo, S. Yao, Microchim. Acta 173 (2011) 95.10.1007/s00604-010-0541-8Suche in Google Scholar
3. M. J. Ahmed, I. Jahan, S. Banoo, Anal. Sci. 18 (2002) 805.10.2116/analsci.18.805Suche in Google Scholar PubMed
4. Y. Fu, P. Li, L. Bu, T. Wang, Q. Xie, J. Chen, S. Yao, Anal. Chem. 83 (2011) 6511.10.1021/ac200471vSuche in Google Scholar PubMed
5. Y. Fu, C. Zou, Q. Xie, X. Xu, C. Chen, W. Deng, S. Yao, J. Phys. Chem. B 113 (2009) 1332.10.1021/jp807337fSuche in Google Scholar PubMed
6. Ł. Popiołek, U. Kosikowska, M. Dobosz, A. Malm, Phosphorus Sulfur Silicon Relat. Elem. 187 (2012) 468.10.1080/10426507.2011.625511Suche in Google Scholar
7. N. S. Jumat Salimon, E. Yousif, A. Hameed, H. Ibraheem, Aust. J. Basic Appl. Sci. 4 (2010/7) 6.Suche in Google Scholar
8. N. Rezki, A. Al-Yahyawi, S. Bardaweel, F. Al-Blewi, M. Aouad, Molecules 20 (2015) 16048.10.3390/molecules200916048Suche in Google Scholar PubMed PubMed Central
9. A. L. Squissato, W. P. Silva, A. T. S. Del Claro, D. P. Rocha, R. M. Dornellas, E. M. Richter, C. W. Foster, C. E. Banks, R. A. A. Munoz, Talanta 174 (2017) 420.10.1016/j.talanta.2017.06.042Suche in Google Scholar PubMed
10. T. T. Qin, J. Li, H. Q. Luo, M. Li, N. B. Li, Corros. Sci. 53 (2011) 1072.10.1016/j.corsci.2010.12.002Suche in Google Scholar
11. W. Chen, H. Q. Luo, N. B. Li, Corros. Sci. 53 (2011) 3356.10.1016/j.corsci.2011.06.013Suche in Google Scholar
12. X. Yang, Y. Huang, G. Liu, J. Liu, L. Ma, X. Niu, X. Qu, J. Taiwan Inst. Chem. E. 93 (2018) 109.10.1016/j.jtice.2018.09.022Suche in Google Scholar
13. Y. El Bakri, L. Guo, E. H. Anouar, E. M. Essassi, J. Mol. Liq. 274 (2019) 759.10.1016/j.molliq.2018.11.048Suche in Google Scholar
14. N. Vasimalai, G. Sheeba, S. A. John, J. Hazard Mater 213–214 (2012) 193.10.1016/j.jhazmat.2012.01.079Suche in Google Scholar
15. P. Kannan, S. A. John, Anal. Biochem. 386 (2009) 65.10.1016/j.ab.2008.11.043Suche in Google Scholar
16. L. Jin, G. Wang, X. Li, L. Li, J. Appl. Electrochem. 41 (2011) 377.10.1007/s10800-010-0246-zSuche in Google Scholar
17. Y. Kiya, G. R. Hutchison, J. C. Henderson, T. Sarukawa, O. Hatozaki, N. Oyama, H. D. Abruña, Langmuir 22 (2006) 10554.10.1021/la061213qSuche in Google Scholar
18. J. Gao, M. A. Lowe, S. Conte, S. E. Burkhardt, H. D. Abruña, Chem. Eur. J. 18 (2012) 8521.10.1002/chem.201103535Suche in Google Scholar
19. H. G. M. Edwards, A. F. Johnson, E. E. Lawson, J. Mol. Struct. 351 (1995) 51.10.1016/0022-2860(94)08485-ZSuche in Google Scholar
20. J. M. Pope, T. Sato, E. Shoji, D. A. Buttry, T. Sotomura, N. Oyama, J. Power Sources 68 (1997) 739.10.1016/S0378-7753(96)02598-0Suche in Google Scholar
21. E. E. Lawson, H. G. M. Edwards, A. F. Johnson, J. Raman Spectrosc 26 (1995) 617.10.1002/jrs.1250260806Suche in Google Scholar
22. F. Hipler, R. A. Fischer, J. Müller, J. Chem. Soc. Perkin Trans. 2 (2002) 1620.10.1039/B201887JSuche in Google Scholar
23. S. Millefiori, A. Millefiori, J. Mol. Struct. Theochem 151 (1987) 373.10.1016/0166-1280(87)85072-8Suche in Google Scholar
24. K. L. Williamson, J. D. Roberts, Heterocycles 11 (1978) 12.10.3987/S(N)-1978-01-0121Suche in Google Scholar
25. A. R. Katritzky, Z. Wang, R. J. Offerman, J. Heterocycl. Chem. 27 (1990) 139.10.1002/jhet.5570270204Suche in Google Scholar
26. N. Maiti, R. Chadha, A. Das, S. Kapoor, RSC Adv. 6 (2016) 62529.10.1039/C6RA10404ESuche in Google Scholar
27. J. K. Mistry, R. Dawes, A. Choudhury, M. R. Van De Mark, J. Heterocycl. Chem. 51 (2014) 747.10.1002/jhet.1903Suche in Google Scholar
28. J. Bats, Acta Crystallogr. B 32 (1976) 2866.10.1107/S0567740876009059Suche in Google Scholar
29. A. D. Becke, Phys. Rev. A 38 (1988) 3098.10.1103/PhysRevA.38.3098Suche in Google Scholar
30. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785.10.1103/PhysRevB.37.785Suche in Google Scholar
31. C. Møller, M. S. Plesset, Phys. Rev. 46 (1934) 618.10.1103/PhysRev.46.618Suche in Google Scholar
32. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 46 (1992) 6671.10.1103/PhysRevB.46.6671Suche in Google Scholar PubMed
33. J. P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244.10.1103/PhysRevB.45.13244Suche in Google Scholar
34. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100 (2008) 136406.10.1103/PhysRevLett.100.136406Suche in Google Scholar PubMed
35. I. B. Obot, N. O. Obi-Egbedi, Colloids Surf. A 330 (2008) 207.10.1016/j.colsurfa.2008.07.058Suche in Google Scholar
36. S. Benabid, T. Douadi, S. Issaadi, C. Penverne, S. Chafaa, Measurement 99 (2017) 53.10.1016/j.measurement.2016.12.022Suche in Google Scholar
37. F. E.-T. Heakal, M. M. Osman, M. A. Deyab, A. E. Elkholy, Z. Phys. Chem. 232 (2017) 13.10.1515/zpch-2017-0949Suche in Google Scholar
38. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. O. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, D. N. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford, CT, USA, (2009).Suche in Google Scholar
39. P. Pulay, Mol. Phys. 17 (1969) 197.10.1080/00268976900100941Suche in Google Scholar
40. J. Clark Stewart, D. Segall Matthew, J. Pickard Chris, J. Hasnip Phil, I. J. Probert Matt, K. Refson, C. Payne Mike, Z. Kristallogr. Cryst. Mater. 220 (2005) 567.10.1524/zkri.220.5.567.65075Suche in Google Scholar
41. D. R. Hamann, M. Schlüter, C. Chiang, Phys. Rev. Lett. 43 (1979) 1494.10.1103/PhysRevLett.43.1494Suche in Google Scholar
42. B. G. Pfrommer, M. Côté, S. G. Louie, M. L. Cohen, J. Comput. Phys. 131 (1997) 233.10.1006/jcph.1996.5612Suche in Google Scholar
43. K. Refson, P. R. Tulip, S. J. Clark, Phys. Rev. B 73 (2006) 155114.10.1103/PhysRevB.73.155114Suche in Google Scholar
44. T. Koopmans, Physica 1 (1934) 104.10.1016/S0031-8914(34)90011-2Suche in Google Scholar
45. R. G. Parr, L. V. Szentpály, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922.10.1021/ja983494xSuche in Google Scholar
46. R. G. Pearson, Inorg. Chem. 27 (1988) 734.10.1021/ic00277a030Suche in Google Scholar
47. Z. Zhang, N. Tian, X. Li, L. Zhang, L. Wu, Y. Huang, Appl. Surf. Sci. 357 (2015) 845.10.1016/j.apsusc.2015.09.092Suche in Google Scholar
48. J. B. Foresman, A. Frisch, Æ. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Wallingford, USA (2015).Suche in Google Scholar
49. C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Crystallogr. 41 (2008) 466.10.1107/S0021889807067908Suche in Google Scholar
50. W. M. Haynes, CRC Handbook of Chemistry and Physics, 97th Edition, CRC Press, Boca Raton (2016).10.1201/9781315380476Suche in Google Scholar
51. A. Bondi, J. Phys. Chem. 68 (1964) 441.10.1021/j100785a001Suche in Google Scholar
52. J. E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity, Harper Collins College Publishers, New York, NY (1983).Suche in Google Scholar
53. G. A. Guirgis, Y. D. Hsu, A. C. Vlaservich, H. D. Stidham, J. R. Durig, J. Mol. Struct. Theochem 378 (1996) 83.10.1016/S0166-1280(96)91003-9Suche in Google Scholar
54. E. B. Wilson, J. C. Decius, P. C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, Dover Publications, New York (2012).Suche in Google Scholar
55. H. J. Schachtshneider, Vibrational Analysis of Polyatomic Molecules, Parts V and VI, Technical Report Nos. 231 and 57, Shell Development, Emeryville, California (1964/1965).Suche in Google Scholar
56. D. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems, John Wiley & Sons, Inc., New York (2004).Suche in Google Scholar
57. P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggs, A. Vargha, J. Am. Chem. Soc. 105 (1983) 7037.10.1021/ja00362a005Suche in Google Scholar
58. J. Baker, A. A. Jarzecki, P. Pulay, J. Phys. Chem. A 102 (1998) 1412.10.1021/jp980038mSuche in Google Scholar
59. M. S. Afifi, R. S. Farag, I. A. Shaaban, L. D. Wilson, W. M. Zoghaib, T. A. Mohamed, Spectrochim. Acta A Mol. Biomol. Spectrosc. 111 (2013) 277.10.1016/j.saa.2013.04.004Suche in Google Scholar
60. I. A. Shaaban, A. E. Hassan, A. M. Abuelela, W. M. Zoghaieb, T. A. Mohamed, J. Mol. Struct. 1103 (2016) 70.10.1016/j.molstruc.2015.09.007Suche in Google Scholar
61. Y. B. Shankar Rao, M. V. S. Prasad, N. Udaya Sri, V. Veeraiah, J. Mol. Struct. 1108 (2016) 567.10.1016/j.molstruc.2015.12.008Suche in Google Scholar
62. S. Meng, Y. Zhao, J. Xue, X. Zheng, Spectrochim. Acta A Mol. Biomol. Spectrosc. 190 (2018) 478.10.1016/j.saa.2017.09.053Suche in Google Scholar
63. N. B. Colthup, L. H. Daly, S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Elsevier Science, Academic Press, New York (1990).Suche in Google Scholar
64. P. Senet, Chem. Phys. Lett. 275 (1997) 527.10.1016/S0009-2614(97)00799-9Suche in Google Scholar
65. D. K. Yadav, B. Maiti, M. A. Quraishi, Corros. Sci. 52 (2010) 3586.10.1016/j.corsci.2010.06.030Suche in Google Scholar
66. S. Martinez, Mater. Chem. Phys. 77 (2003) 97.10.1016/S0254-0584(01)00569-7Suche in Google Scholar
67. G. Gece, Corros. Sci. 50 (2008) 2981.10.1016/j.corsci.2008.08.043Suche in Google Scholar
68. N. Khalil, Electrochim. Acta 48 (2003) 2635.10.1016/S0013-4686(03)00307-4Suche in Google Scholar
69. M. S. Masoud, M. K. Awad, M. A. Shaker, M. M. T. El-Tahawy, Corros. Sci. 52 (2010) 2387.10.1016/j.corsci.2010.04.011Suche in Google Scholar
70. F. Zhang, Y. Tang, Z. Cao, W. Jing, Z. Wu, Y. Chen, Corros. Sci. 61 (2012) 1.10.1016/j.corsci.2012.03.045Suche in Google Scholar
71. A. Aloysius, R. Ramanathan, A. Christy, S. Baskaran, N. Antony, Egypt. J. Petrol. 27 (2018) 371.10.1016/j.ejpe.2017.06.003Suche in Google Scholar
72. A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 83 (1985) 735.10.1063/1.449486Suche in Google Scholar
73. B. Geboes, K. Baert, A. Hubin, T. Breugelmans, Electrochim. Acta 156 (2015) 308.10.1016/j.electacta.2015.01.036Suche in Google Scholar
74. U. Ghani, N. Ullah, Bioorg. Med. Chem. 18 (2010) 4042.10.1016/j.bmc.2010.04.021Suche in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/zpch-2018-1346).
©2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- The Effect of Crystalline Microstructure of PVDF Binder on Mechanical and Electrochemical Performance of Lithium-Ion Batteries Cathode
- Mechanistic Study on Surface Tension of Binary and Ternary Mixtures Containing Choline Chloride, Ethylene Glycol and Water (Components of Aqueous Solutions of a Deep Eutectic Solvent, Ethaline)
- Thiadiazole-2-Thiol-5-Thione and 2,5-Dimercapto-1,3,4-Thiadiazol Tautomerism, Conformational Stability, Vibrational Assignments, Inhibitor Efficiency and Quantum Chemical Calculations
- The Thermodynamic and pH Metric Binding Studies of Cu+2 Ions with Egg Protein by Spectrometric and Diffusion Current Techniques
- Adsorption of 2,4-Dichlorophenoxyacetic Acid from Aqueous Solution Using Carbonized Chest Nut as Low Cost Adsorbent: Kinetic and Thermodynamic
- The Kinetics and Equilibrium Thermodynamics Study on the Removal of Direct Blue and Titan Yellow Dyes from Aqueous Media by Modified Rice Husk Char
- Investigation of Dielectric Properties, Electric Modulus and Conductivity of the Au/Zn-Doped PVA/n-4H-SiC (MPS) Structure Using Impedance Spectroscopy Method
- Finding Solvent for Polyamide 11 Using a Computer Software
- Phytochemical Synthesis of Silver Nanoparticles Using Anthemis Nobilis Extract and Its Antibacterial Activity
Artikel in diesem Heft
- Frontmatter
- The Effect of Crystalline Microstructure of PVDF Binder on Mechanical and Electrochemical Performance of Lithium-Ion Batteries Cathode
- Mechanistic Study on Surface Tension of Binary and Ternary Mixtures Containing Choline Chloride, Ethylene Glycol and Water (Components of Aqueous Solutions of a Deep Eutectic Solvent, Ethaline)
- Thiadiazole-2-Thiol-5-Thione and 2,5-Dimercapto-1,3,4-Thiadiazol Tautomerism, Conformational Stability, Vibrational Assignments, Inhibitor Efficiency and Quantum Chemical Calculations
- The Thermodynamic and pH Metric Binding Studies of Cu+2 Ions with Egg Protein by Spectrometric and Diffusion Current Techniques
- Adsorption of 2,4-Dichlorophenoxyacetic Acid from Aqueous Solution Using Carbonized Chest Nut as Low Cost Adsorbent: Kinetic and Thermodynamic
- The Kinetics and Equilibrium Thermodynamics Study on the Removal of Direct Blue and Titan Yellow Dyes from Aqueous Media by Modified Rice Husk Char
- Investigation of Dielectric Properties, Electric Modulus and Conductivity of the Au/Zn-Doped PVA/n-4H-SiC (MPS) Structure Using Impedance Spectroscopy Method
- Finding Solvent for Polyamide 11 Using a Computer Software
- Phytochemical Synthesis of Silver Nanoparticles Using Anthemis Nobilis Extract and Its Antibacterial Activity