Startseite Investigation of Dielectric Properties, Electric Modulus and Conductivity of the Au/Zn-Doped PVA/n-4H-SiC (MPS) Structure Using Impedance Spectroscopy Method
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of Dielectric Properties, Electric Modulus and Conductivity of the Au/Zn-Doped PVA/n-4H-SiC (MPS) Structure Using Impedance Spectroscopy Method

  • Havva Elif Lapa , Ali Kökce EMAIL logo , Ahmet Faruk Özdemir und Şemsettin Altındal
Veröffentlicht/Copyright: 8. November 2019

Abstract

The 50 nm thickness Zn-doped polyvinyl alcohol (PVA) was deposited on n-4H-SiC semiconductor as interlayer by electro-spinning method and so Au/Zn-doped PVA/n-4H-SiC metal-polymer-semiconductor (MPS) structure were fabricated. The real and imaginary parts of the complex dielectric constant (ε′, ε′′), loss-tangent (tan δ), the real and imaginary parts of the complex electric modulus (M′, M′′) and ac electrical conductivity (σac) behavior of this structure were examined using impedance spectroscopy method in a wide range of frequency (1 kHz–400 kHz) and voltage (−1 V)–(+6 V) at room temperature. The values of ε′, ε′′, tan δ, M′, M′′ and σac are determined sensitive to the frequency and voltage in depletion and accumulation regions. The values of ε′ and ε′′ decrease with increasing frequency while the values of M′ and σac increase. The peak behavior in the tan δ and M′′ vs. frequency curves was attributed to the dielectric relaxation processes and surface states (Nss). The plots of ln (σac) vs. ln (f) at enough high forward bias voltage (+6 V) have three linear regions with different slopes which correspond to low, intermediate and high frequencies, respectively. The dc conductivity is effective at low frequencies whereas the ac conductivity effective at high frequencies. According to experimental results, the surface/dipole polarizations can occur more easily occur at low frequencies and the majority of Nss between Zn-doped PVA and n-4H-SiC contributes to the deviation of dielectric behavior of this structure.

Acknowledgement

The authors wish to thank The Management Unit of Scientific Research Projects of Süleyman Demirel University (SDUBAP) for contributions. This study was supported by SDUBAP under 4611-D2-16.

References

1. V. Rajagopal Reddy, A. Umapathi, L. Dasaradha Rao, Curr. Appl. Phys. 13 (2013) 1604.10.1016/j.cap.2013.06.001Suche in Google Scholar

2. A. A. Hendi, R. H. Al Orainy, Synth. Met. 193 (2014) 31.10.1016/j.synthmet.2014.03.007Suche in Google Scholar

3. H. Tecimer, H. Uslu, Z. A. Alahmed, F. Yakuphanoğlu, Ş. Altındal, Compos. Part B Eng. 57 (2014) 25.10.1016/j.compositesb.2013.09.040Suche in Google Scholar

4. S. Altındal Yerişkin, M. Balbaşı, A. Tataroğlu, J. Appl. Polym. Sci. 133 (2016) 33.10.1002/app.43827Suche in Google Scholar

5. I. M. Afandiyeva, M. M. Bülbül, Ş. Altındal, S. Bengi, Microelectron. Eng. 93 (2012) 50.10.1016/j.mee.2011.05.041Suche in Google Scholar

6. B.-G. Kim, S. M. Cho, T.-Y. Kim, H. M. Jang, Phys. Rev. Lett. 86 (2001) 3404.10.1103/PhysRevLett.86.3404Suche in Google Scholar

7. E. E. Tanrıkulu, D. E. Yıldız, A. Günen, Ş. Altındal, Phys. Scr. 90 (2015) 95801.10.1088/0031-8949/90/9/095801Suche in Google Scholar

8. H. G. Çetinkaya, D. E. Yıldız, Ş. Altındal, Int. J. Mod. Phys. B 29 (2015) 1450237.10.1142/S0217979214502373Suche in Google Scholar

9. V. Rajagopal Reddy, Indian J. Phys. 89 (2015) 463.10.1007/s12648-014-0602-7Suche in Google Scholar

10. C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 14 (2002) 99.10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9Suche in Google Scholar

11. İ. Taşçıoğlu, Ö. Tüzün Özmen, H. M. Şağban, E. Yağlıoğlu, Ş. Altındal, J. Electron. Mater. 46 (2017) 2379.10.1007/s11664-017-5294-2Suche in Google Scholar

12. M. İlhan, J. Mater. Electron. Device 1 (2017) 15.Suche in Google Scholar

13. S. Altındal, J. Mater. Electron. Device 1 (2017) 42.Suche in Google Scholar

14. H. Özerli, İ. Karteri, A. Bekereci, Ş. Karataş, J. Mater. Electron. Device 1 (2017) 83.Suche in Google Scholar

15. G. V. Kumar, R. Chandramani, Acta Phys. Pol. A 117 (2010) 917.10.12693/APhysPolA.117.917Suche in Google Scholar

16. U. Aydemir, I. Taşçıoğlulu, Ş. Altindal, İ. Uslu, Mater. Sci. Semicond. Process. 16 (2013) 1865.10.1016/j.mssp.2013.07.013Suche in Google Scholar

17. Y. Azizian-Kalandaragh, U. Aydemir, Ş. Altindal, J. Electron. Mater. 43 (2014) 1226.10.1007/s11664-014-2998-4Suche in Google Scholar

18. D. E. Yıldız, D. H. Apaydın, L. Toppare, A. Cirpan, J. Appl. Polym. Sci. 134 (2017) 1.10.1002/app.44817Suche in Google Scholar

19. S. Demirezen, Appl. Phys. A 112 (2013) 827.10.1007/s00339-013-7605-7Suche in Google Scholar

20. A. F. Özdemir, Z. Kotan, D. A. Aldemir, S. Altındal, Eur. Phys. J. Appl. Phys. 46 (2009) 20402.10.1051/epjap/2009035Suche in Google Scholar

21. V. R. Reddy, Thin Solid Films 556 (2014) 300.10.1016/j.tsf.2014.01.036Suche in Google Scholar

22. Ç. Bilkan, S. Zeyrek, S. E. San, Ş. Altindal, Mater. Sci. Semicond. Process. 32 (2015) 137.10.1016/j.mssp.2014.12.071Suche in Google Scholar

23. T. Tunç, İ. Dökme, Ş. Altındal, İ. Uslu, J. Appl. Polym. Sci. 122 (2011) 265.10.1002/app.34029Suche in Google Scholar

24. R. K. Gupta, K. Ghosh, P. K. Kahol, Curr. Appl. Phys. 9 (2009) 933.10.1016/j.cap.2008.09.007Suche in Google Scholar

25. H. E. Lapa, A. Kökce, M. Al-Dharob, İ. Orak, A. F. Özdemir, Ş. Altındal, Eur. Phys. J. Appl. Phys. 80 (2017) 10101.10.1051/epjap/2017170147Suche in Google Scholar

26. H. E. Lapa, A. Kökce, A. F. Özdemir, İ. Uslu, Ş. Altındal, Bull. Mater. Sci. 41 (2018) 82.10.1007/s12034-018-1602-6Suche in Google Scholar

27. B. C. Sutar, R. N. P. Choudhary, P. R. Das, Ceram. Int. 40 (2014) 7791.10.1016/j.ceramint.2013.12.122Suche in Google Scholar

28. A. Chelkowski, Dielectrics Physics, PWN/Elsevier, Amsterdam (1980).Suche in Google Scholar

29. A. A. Sattar, S. A. Rahman, Phys. Status Solidi Appl. Res. 200 (2003) 415.10.1002/pssa.200306663Suche in Google Scholar

30. P. B. Macedo, C. T. Moynihan, R. Bose, Phys. Chem. Glas. 13 (1972) 171.Suche in Google Scholar

31. P. Dutta, S. Biswas, S. De Kumar, Mater. Res. Bull. 37 (2002) 193.10.1016/S0025-5408(01)00813-3Suche in Google Scholar

32. Y. Şafak-Asar, T. Asar, Ş. Altındal, S. Özçelik, J. Alloys Compd. 628 (2015) 442.10.1016/j.jallcom.2014.12.170Suche in Google Scholar

33. P. Chattopadhyay, B. RayChaudhuri, Solid. State. Electron. 36 (1993) 605.10.1016/0038-1101(93)90272-RSuche in Google Scholar

34. N. A. Khan, M. Mumtaz, A. A. Khurram, J. Appl. Phys. 104 (2008) 33916.10.1063/1.2967823Suche in Google Scholar

35. J. C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon Press, London (1873).Suche in Google Scholar

36. K. W. Wagner, Ann. Der Phys. 40 (1913) 817.10.1002/andp.19133450502Suche in Google Scholar

37. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49 (1994) 7868.10.1103/PhysRevB.49.7868Suche in Google Scholar

38. V. V Daniel, Dielectric Relaxation, Academic, London (1967).Suche in Google Scholar

39. G. Yellaiah, T. Shekharam, K. Hadasa, M. Nagabhushanam, J. Alloys Compd. 609 (2014) 192.10.1016/j.jallcom.2014.04.124Suche in Google Scholar

40. I. Chaabane, F. Hlel, K. Guidara, J. Alloys Compd. 461 (2008) 495.10.1016/j.jallcom.2007.07.031Suche in Google Scholar

Received: 2017-12-04
Accepted: 2019-06-18
Published Online: 2019-11-08
Published in Print: 2020-03-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2017-1091/html
Button zum nach oben scrollen