Lu26 T 17–x In x (T = Rh, Ir, Pt) – first indium intermetallics with Sm26Co11Ga6-type structure
-
Nataliya L. Gulay
Abstract
Several Lu26 T 17−x In x (T = Rh, Ir, Pt) phases with varying x values were obtained by induction-melting reactions of the elements in sealed tantalum ampoules. All samples were characterized through their X-ray powder diffraction patterns. These compounds crystallize with the tetragonal Sm26Co11Ga6-type structure, space group P4/mbm and Z = 2. The structure of Lu26Pt7.55In9.45 has been refined from single-crystal X-ray diffractometer data: a = 1165.32(5), c = 1547.46(6) pm, wR2 = 0.0895, 2173 F 2 values and 70 variables. The Lu26 T 17−x In x phases are the first indium representatives of the Sm26Co11Ga6 type. They belong to the n = 4 members of Parthé’s A 5n+6 B 3n+5 series, which show different stacking sequences of square prisms and antiprisms. Lu26Pt7.55In9.45 as a lutetium-rich intermetallic compound exhibits a broader range of shorter Lu–Lu distances (341–375 pm). Temperature dependent magnetic susceptibility measurements show Pauli paramagnetism for Lu26Ir8.5In8.5 and Lu26Rh7In10 with room temperature values of the magnetic susceptibility of χ = 1.53 × 10−3 emu mol−1 for Lu26Rh7In10 and χ = 6.54 × 10−4 emu mol−1 for Lu26Ir8.5In8.5.
Acknowledgements
We thank M. Sc. C. Paulsen for the EDX analyses.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (Release 2021/22); ASM International®: Materials Park, Ohio (USA), 2021.Suche in Google Scholar
2. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Anorg. Allg. Chem. 2022, 648; https://doi.org/10.1002/zaac.202100356.Suche in Google Scholar
3. Gulay, N. L., Reimann, M. K., Kalychak, Y. M., Pöttgen, R. Z. Anorg. Allg. Chem. 2022, 648, 49–57.10.1002/zaac.202100356Suche in Google Scholar
4. Gulay, N. L., Reimann, M. K., Kalychak, Y. M., Pöttgen, R. Z. Naturforsch. 2022, 77b, 347–352; https://doi.org/10.1515/znb-2021-0166.Suche in Google Scholar
5. Dzevenko, M. V., Zaremba, R. I., Hlukhyy, V. H., Rodewald, U. C., Pöttgen, R., Kalychak, Y. M. Z. Anorg. Allg. Chem. 2007, 633, 724–728; https://doi.org/10.1002/zaac.200600328.Suche in Google Scholar
6. Kalychak, J. M., Zaremba, V. I., Zavalij, P. Y. Z. Kristallogr. 1993, 208, 380–381; https://doi.org/10.1524/zkri.1993.208.12.380.Suche in Google Scholar
7. Zaremba, V. I., Kalychak, Y. M., Zavalii, P. Y. Sov. Phys. Crystallogr. 1992, 37, 178–180.Suche in Google Scholar
8. Zaremba, V. I., Kalychak, Y. M., Dzevenko, M. V., Rodewald, U. C., Heying, B., Pöttgen, R. Z. Naturforsch. 2006, 61b, 23–28; https://doi.org/10.1515/znb-2006-0105.Suche in Google Scholar
9. Galadzhun, Y. V., Hoffmann, R. D., Heletta, L., Horiacha, M., Pöttgen, R. Z. Anorg. Allg. Chem. 2018, 644, 1513–1518; https://doi.org/10.1002/zaac.201800188.Suche in Google Scholar
10. Zaremba, R., Rodewald, U. C., Hoffmann, R. D., Pöttgen, R. Monatsh. Chem. 2007, 138, 523–528; https://doi.org/10.1007/s00706-007-0663-9.Suche in Google Scholar
11. Gulay, N. L., Kreiner, G., Kalychak, Y. M., Pöttgen, R. Z. Kristallogr. 2022, 237, 293–302. https://doi.org/10.1515/zkri-2022-0031.Suche in Google Scholar
12. Yarmolyuk, Y. P., Grin, Y. N., Olesh, O. M. Sov. Phys. Crystallogr. 1980, 25, 143–146.Suche in Google Scholar
13. Le Roy, J., Moreau, J. M., Paccard, D., Parthé, E. J. Less-Common Met. 1980, 76, 131–135; https://doi.org/10.1016/0022-5088(80)90016-8.Suche in Google Scholar
14. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Suche in Google Scholar
15. Pöttgen, R., Lang, A., Hoffmann, R. D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143–150.10.1524/zkri.1999.214.3.143Suche in Google Scholar
16. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Suche in Google Scholar
17. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16; https://doi.org/10.1107/s0108767313099868.Suche in Google Scholar
18. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Suche in Google Scholar
19. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Suche in Google Scholar
20. OriginPro 2016G (version 9.3.2.303); OriginLab Corporation: Northampton, Massachusetts (USA), 2016.Suche in Google Scholar
21. CorelDraw Graphics Suite 2017 (version 19.0.0.328); Corel Corporation: Ottawa, Ontario (Canada), 2017.Suche in Google Scholar
22. Sichevich, O. M., Grin, Yu., Yarmolyuk, Y. P. Russ. Metall. 1989, 2, 198–200.Suche in Google Scholar
23. Morozkin, A. V., Garshev, A. V., Knotko, A. V., Yapaskurt, V. O., Yao, J. J. Solid State Chem. 2019, 277, 303–315; https://doi.org/10.1016/j.jssc.2019.06.026.Suche in Google Scholar
24. Gladyshevskii, R. E., Grin, Y., Yarmolyuk, Y. P. Stabiln. Metastabiln. Fazovye Ravnovesiya Met. Sist. 1985, 49–54.Suche in Google Scholar
25. Myakush, O. R., Fedorchuk, A. A., Zelinskii, A. V. Inorg. Mater. 1998, 34, 562–565.Suche in Google Scholar
26. Murashova, E. V. Kurenbaeva Zh. M. Inorg. Mater. 2019, 55, 785–792; https://doi.org/10.1134/s0020168519080107.Suche in Google Scholar
27. Myakush, O., Fedorchuk, A. Visn. Lviv Univ. Ser. Chem. 2001, 40, 32–35.Suche in Google Scholar
28. Hermes, W., Matar, S. F., Pöttgen, R. Z. Naturforsch. 2009, 64b, 901–908; https://doi.org/10.1515/znb-2009-0805.Suche in Google Scholar
29. Mishra, T., Hoffmann, R. D., Schwickert, C., Pöttgen, R. Z. Naturforsch. 2011, 66b, 771–776; https://doi.org/10.5560/znb.2011.66b0771.Suche in Google Scholar
30. Aronsson, B. Acta Chem. Scand. 1955, 9, 1107–1110; https://doi.org/10.3891/acta.chem.scand.09-1107.Suche in Google Scholar
31. Moreau, J. M., Paccard, D., Parthé, E. Acta Crystallogr. 1976, B32, 1767–1771; https://doi.org/10.1107/s0567740876006365.Suche in Google Scholar
32. Fornasini, M. L., Franceschi, E. Acta Crystallogr. 1977, B33, 3476–3479; https://doi.org/10.1107/s0567740877011236.Suche in Google Scholar
33. Cromer, D. T., Larson, A. C. Acta Crystallogr. 1977, B33, 2620–2627; https://doi.org/10.1107/s0567740877009030.Suche in Google Scholar
34. Leon-Escamilla, E. A., Hurng, W. M., Peterson, E. S. Corbett J. D. Inorg. Chem. 1997, 36, 703–710; https://doi.org/10.1021/ic961035w.Suche in Google Scholar
35. Tappe, F., Schappacher, F. M., Langer, T., Schellenberg, I., Pöttgen, R. Z. Naturforsch. 2012, 67b, 594–604; https://doi.org/10.5560/znb.2012-0070.Suche in Google Scholar
36. Leon-Escamilla, E. A. Corbett J. D. Inorg. Chem. 1999, 38, 738–743; https://doi.org/10.1021/ic980861x.Suche in Google Scholar
37. Kurenbaeva, Z. M., Tursina, A. I., Murashova, E. V., Nesterenko, S. N., Seropegin, Y. D. Russ. J. Inorg. Chem. 2011, 56, 218–222; https://doi.org/10.1134/s003602361102015x.Suche in Google Scholar
38. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar
39. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- Intermediate ytterbium valence in YbRhSn2
- Intermetallic compounds RE2Ga2Mg (RE = Tb–Tm, Lu) with Mo2B2Fe-type structure
- Synthesis, crystal structure and magnetic properties of mer-tricyanidoiron(III) precursor-based 1D heterobimetallic complexes
- The ternary system Sc–Co–In at 870 K: the isothermal section and the crystal structures of the compounds
- High-pressure synthesis of borate-nitrates: crystal structure of M3B7O13(NO3) (M = Co2+, Ni2+, Cu2+, Zn2+, Cd2+)
- Mg2MnGa3 – An orthorhombically distorted superstructure variant of the hexagonal Laves phase MgZn2
- Lu26 T 17–x In x (T = Rh, Ir, Pt) – first indium intermetallics with Sm26Co11Ga6-type structure
- Orthoamide und Iminiumsalze, CVIa. Kondensationsreaktionen von Orthoamiden der Alkincarbonsäuren mit CH-aciden Methylheterocyclen
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- Intermediate ytterbium valence in YbRhSn2
- Intermetallic compounds RE2Ga2Mg (RE = Tb–Tm, Lu) with Mo2B2Fe-type structure
- Synthesis, crystal structure and magnetic properties of mer-tricyanidoiron(III) precursor-based 1D heterobimetallic complexes
- The ternary system Sc–Co–In at 870 K: the isothermal section and the crystal structures of the compounds
- High-pressure synthesis of borate-nitrates: crystal structure of M3B7O13(NO3) (M = Co2+, Ni2+, Cu2+, Zn2+, Cd2+)
- Mg2MnGa3 – An orthorhombically distorted superstructure variant of the hexagonal Laves phase MgZn2
- Lu26 T 17–x In x (T = Rh, Ir, Pt) – first indium intermetallics with Sm26Co11Ga6-type structure
- Orthoamide und Iminiumsalze, CVIa. Kondensationsreaktionen von Orthoamiden der Alkincarbonsäuren mit CH-aciden Methylheterocyclen