Mg2MnGa3 – An orthorhombically distorted superstructure variant of the hexagonal Laves phase MgZn2
-
Nazar Pavlyuk
Abstract
The Laves phase Mg2MnGa3 was synthesized from the elements by arc-melting and subsequent annealing in a silica ampoule at T = 670 K. The structure of Mg2MnGa3 was refined from single-crystal X-ray diffractometer data: URe2 type, Cmcm, a = 543.24(1), b = 869.59(3), c = 858.58(2) pm, wR2 = 0.0556, 273 F 2 values and 24 variables. The manganese and gallium atoms form a three-dimensional network of corner- and face-sharing MnGa3 tetrahedra that derive as a ternary ordering variant from the hexagonal Laves phase MgZn2. The structures of the distortion and coloring variants, i.e., MgZn2, URe2, Mg2Cu3Si and Mg2MnGa3 are discussed on the basis of a Bärnighausen tree. The electronic structure calculation data indicate that in addition to the metallic type of bonding an additional covalent interaction appears between the Ga–Ga and Mn–Ga atoms.
Acknowledgements
We thank Dipl.-Ing. U. Ch. Rodewald for the intensity data collection.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Villars, P., Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2021/22); ASM International®: Materials Park: Ohio (USA), 2021.Search in Google Scholar
2. Parthé, E. Elements of Inorganic Structural Chemistry: Selected Efforts to Predict Structural Features, 2nd ed.; K. Sutter Parthé Publisher: Petit-Lancy, Switzerland, 1996. http://archive-ouverte.unige.ch/unige:97818 (accessed Jul 22, 2022).Search in Google Scholar
3. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Anorg. Allg. Chem. 2021, 647, 75–80; https://doi.org/10.1002/zaac.202000362.Search in Google Scholar
4. Andersson, S., Hyde, B. G. J. Solid State Chem. 1974, 9, 92–101; https://doi.org/10.1016/0022-4596(74)90059-0.Search in Google Scholar
5. Andersson, S. Angew. Chem., Int. Ed. Engl. 1983, 22, 69–81; https://doi.org/10.1002/anie.198300693.Search in Google Scholar
6. Parthé, E., Chabot, B., Cenzual, K. Chimia 1985, 39, 164–174.Search in Google Scholar
7. Komura, Y., Nakaue, A., Mitarai, M. Acta Crystallogr. 1972, B28, 727–732; https://doi.org/10.1107/s0567740872003097.Search in Google Scholar
8. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Naturforsch. 2021, 76b, 345–354.10.1515/znb-2021-0052Search in Google Scholar
9. Seidel, S., Pöttgen, R. Z. Anorg. Allg. Chem. 2017, 643, 261–265; https://doi.org/10.1002/zaac.201600422.Search in Google Scholar
10. Eustermann, F., Pominov, A., Pöttgen, R. Z. Anorg. Allg. Chem. 2018, 644, 1297–1303; https://doi.org/10.1002/zaac.201800287.Search in Google Scholar
11. Noréus, D., Eriksson, L., Göthe, L., Werner, P.-E. J. Less-Common Met. 1985, 107, 345–349.10.1016/0022-5088(85)90093-1Search in Google Scholar
12. Horyń, R. J. Less-Common Met. 1977, 56, 103–111.10.1016/0022-5088(77)90223-5Search in Google Scholar
13. Seidel, S., Janka, O., Benndorf, C., Mausolf, B., Haarmann, F., Eckert, H., Heletta, L., Pöttgen, R. Z. Naturforsch. 2017, 72b, 289–303; https://doi.org/10.1515/znb-2016-0265.Search in Google Scholar
14. Osters, O., Nilges, T., Schöneich, M., Schmidt, P., Rothballer, J., Pielnhofer, F., Weihrich, R. Inorg. Chem. 2012, 51, 8119–8127; https://doi.org/10.1021/ic3005213.Search in Google Scholar PubMed
15. Hatt, B. A. Acta Crystallogr. 1961, 14, 119–123; https://doi.org/10.1107/s0365110x61000516.Search in Google Scholar
16. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891.10.1002/zaac.201400023Search in Google Scholar
17. Block, T., Seidel, S., Pöttgen, R. Z. Kristallogr. 2022, 237, 215–218; https://doi.org/10.1515/zkri-2022-0021.Search in Google Scholar
18. Frank, F. C., Kasper, J. S. Acta Crystallogr. 1958, 11, 184–190; https://doi.org/10.1107/s0365110x58000487.Search in Google Scholar
19. Frank, F. C., Kasper, J. S. Acta Crystallogr. 1959, 12, 483–499; https://doi.org/10.1107/s0365110x59001499.Search in Google Scholar
20. Komura, Y. Acta Crystallogr. 1962, 15, 770–778; https://doi.org/10.1107/s0365110x62002017.Search in Google Scholar
21. Haydock, R., Johannes, R. L. J. Phys. F Met. Phys. 1975, 5, 2055–2067; https://doi.org/10.1088/0305-4608/5/11/017.Search in Google Scholar
22. Komura, Y., Tokunaga, K. Acta Crystallogr. 1980, B36, 1548–1554; https://doi.org/10.1107/s0567740880006565.Search in Google Scholar
23. Ohta, Y., Pettifor, D. G. J. Phys.: Condens. Matter 1990, 2, 8189–8194; https://doi.org/10.1088/0953-8984/2/41/006.Search in Google Scholar
24. Nesper, R. Angew. Chem., Int. Ed. Engl. 1991, 30, 789–817; https://doi.org/10.1002/anie.199107891.Search in Google Scholar
25. Johnston, R. L., Hoffmann, R. Z. Anorg. Allg. Chem. 1992, 616, 105–120; https://doi.org/10.1002/zaac.19926161017.Search in Google Scholar
26. Nesper, R., Miller, G. J. J. Alloys Compd. 1993, 197, 109–121; https://doi.org/10.1016/0925-8388(93)90628-z.Search in Google Scholar
27. Kubota, Y., Takata, M., Sakata, M., Ohba, T., Kifune, K., Tadaki, T. J. Phys.: Condens. Matter 2000, 12, 1253–1259; https://doi.org/10.1088/0953-8984/12/7/309.Search in Google Scholar
28. Stein, F., Palm, M., Sauthoff, G. Intermetallics 2004, 12, 713–720; https://doi.org/10.1016/j.intermet.2004.02.010.Search in Google Scholar
29. Stein, F., Palm, M., Sauthoff, G. Intermetallics 2005, 13, 1056–1074; https://doi.org/10.1016/j.intermet.2004.11.001.Search in Google Scholar
30. Gschneidner, K. A.Jr., Pecharsky, V. K. Z. Kristallogr. 2006, 221, 375–381.10.1524/zkri.2006.221.5-7.375Search in Google Scholar
31. Chen, W., Sun, J. Phys. B 2006, 382, 279–284; https://doi.org/10.1016/j.physb.2006.02.031.Search in Google Scholar
32. Zhang, C.-W. Phys. B 2008, 403, 2088–2092; https://doi.org/10.1016/j.physb.2007.11.033.Search in Google Scholar
33. Ormeci, A., Simon, A., Grin, Y. Angew. Chem. Int. Ed. 2010, 49, 8997–9001; https://doi.org/10.1002/anie.201001534.Search in Google Scholar PubMed
34. Steurer, W., Dshemuchadse, J. Intermetallics: Structures, Properties, and Statistics, IUCr Monographs on Crystallography, Vol. 26; Oxford University Press: New York, 2016.10.1093/acprof:oso/9780198714552.001.0001Search in Google Scholar
35. Siggelkow, L., Hlukhyy, V., Fässler, T. F. Z. Anorg. Allg. Chem. 2017, 643, 1424–1430; https://doi.org/10.1002/zaac.201700180.Search in Google Scholar
36. Pöttgen, R., Johrendt, D. Intermetallics, 2nd ed.; De Gruyter: Berlin, 2019.10.1515/9783110636727Search in Google Scholar
37. Chumak, I., Pavlyuk, V., Hlukhyy, V., Pöttgen, R. In 9th Int. Conf. Crystal Chem. Intermet. Compd., Lviv, Ukraine, 2005; p. 83.Search in Google Scholar
38. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar
39. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar
40. Andersen, O. K. Phys. Rev. B 1975, 12, 3060–3083; https://doi.org/10.1103/physrevb.12.3060.Search in Google Scholar
41. Skriver, H. The LMTO Method; Springer: Berlin, 1984.10.1007/978-3-642-81844-8Search in Google Scholar
42. Phariseau, P., Temmerman, M., Eds. The Electronic Structure of Complex Systems; Plenum Press: New York, 1984.10.1007/978-1-4613-2405-8Search in Google Scholar
43. Krier, G., Jepsen, O., Burkhardt, A., Andersen, O. K. The TB-LMTOASA Program (Version 4.7); Max-Planck-Institut für Festkörperforschung: Stuttgart (Germany), 1995.Search in Google Scholar
44. von Barth, U., Hedin, L. J. Phys. C: Solid State Phys. 1972, 5, 1629–1642; https://doi.org/10.1088/0022-3719/5/13/012.Search in Google Scholar
45. Dronskowski, R., Blöchl, P. E. J. Phys. Chem. 1993, 97, 8617–8624; https://doi.org/10.1021/j100135a014.Search in Google Scholar
46. Becke, A. D., Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397–5403; https://doi.org/10.1063/1.458517.Search in Google Scholar
47. Eck, B. wxDragon (version 1.6.6); Aachen, 1994–2010. http://www.ssc.rwth-aachen.de.Search in Google Scholar
48. Sheldrick, G. M. Shelxs-97, Program for the Solution of Crystal Structures; University of Göttingen: Göttingen (Germany), 1997.Search in Google Scholar
49. Sheldrick, G. M. Shelxl-97, Program for Crystal Structure Refinement; University of Göttingen: Göttingen (Germany), 1997.Search in Google Scholar
50. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139.Search in Google Scholar
51. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519.10.1002/zaac.200400250Search in Google Scholar
52. Müller, U. Relating crystal structures by group-subgroup relations. In International Tables for Crystallography, Volume A1, Symmetry Relations Between Space Groups; Wondratschek, H., Müller, U., Eds.; John Wiley & Sons: Chichester, 2010, pp. 44–56.10.1107/97809553602060000795Search in Google Scholar
53. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen–Anwendungen der kristallographischen Gruppentheorie in der Kristallchemie; Vieweg + Teubner Verlag: Wiesbaden, 2011.10.1007/978-3-8348-8342-1_5Search in Google Scholar
54. Witte, H. Z. Angew. Mineral. 1938, 1, 255–268.Search in Google Scholar
55. Suryanarayana, C. J. Less-Common Met. 1974, 35, 347–352; https://doi.org/10.1016/0022-5088(74)90248-3.Search in Google Scholar
56. Inoue, K., Nakamura, Y., Ikeda, Y., Bando, Y., Tsvyashchenko, A. V., Fomicheva, L. N. J. Phys. Soc. Jpn. 1995, 64, 4901–4905; https://doi.org/10.1143/jpsj.64.4901.Search in Google Scholar
57. Ott, H. R., Hulliger, F., Delsing, P., Rudigier, H., Fisk, Z. J. Less-Common Met. 1986, 124, 235–243; https://doi.org/10.1016/0022-5088(86)90496-0.Search in Google Scholar
58. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar
59. Meissner, H. G., Schubert, K. Z. Metallkd. 1965, 56, 523–530.10.1515/ijmr-1965-560807Search in Google Scholar
60. Kim, S.-H., Boström, M., Seo, D.-K. J. Am. Chem. Soc. 2008, 130, 1384–1391; https://doi.org/10.1021/ja0765924.Search in Google Scholar PubMed
61. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar
62. Smith, G. S., Johnson, Q., Wood, D. H. Acta Crystallogr. 1969, B25, 554–557; https://doi.org/10.1107/s0567740869002548.Search in Google Scholar
63. Smith, G. S., Mucker, K. F., Johnson, Q., Wood, D. H. Acta Crystallogr. 1969, B25, 549–553; https://doi.org/10.1107/s0567740869002536.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Intermediate ytterbium valence in YbRhSn2
- Intermetallic compounds RE2Ga2Mg (RE = Tb–Tm, Lu) with Mo2B2Fe-type structure
- Synthesis, crystal structure and magnetic properties of mer-tricyanidoiron(III) precursor-based 1D heterobimetallic complexes
- The ternary system Sc–Co–In at 870 K: the isothermal section and the crystal structures of the compounds
- High-pressure synthesis of borate-nitrates: crystal structure of M3B7O13(NO3) (M = Co2+, Ni2+, Cu2+, Zn2+, Cd2+)
- Mg2MnGa3 – An orthorhombically distorted superstructure variant of the hexagonal Laves phase MgZn2
- Lu26 T 17–x In x (T = Rh, Ir, Pt) – first indium intermetallics with Sm26Co11Ga6-type structure
- Orthoamide und Iminiumsalze, CVIa. Kondensationsreaktionen von Orthoamiden der Alkincarbonsäuren mit CH-aciden Methylheterocyclen
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Intermediate ytterbium valence in YbRhSn2
- Intermetallic compounds RE2Ga2Mg (RE = Tb–Tm, Lu) with Mo2B2Fe-type structure
- Synthesis, crystal structure and magnetic properties of mer-tricyanidoiron(III) precursor-based 1D heterobimetallic complexes
- The ternary system Sc–Co–In at 870 K: the isothermal section and the crystal structures of the compounds
- High-pressure synthesis of borate-nitrates: crystal structure of M3B7O13(NO3) (M = Co2+, Ni2+, Cu2+, Zn2+, Cd2+)
- Mg2MnGa3 – An orthorhombically distorted superstructure variant of the hexagonal Laves phase MgZn2
- Lu26 T 17–x In x (T = Rh, Ir, Pt) – first indium intermetallics with Sm26Co11Ga6-type structure
- Orthoamide und Iminiumsalze, CVIa. Kondensationsreaktionen von Orthoamiden der Alkincarbonsäuren mit CH-aciden Methylheterocyclen