Startseite Mg2MnGa3 – An orthorhombically distorted superstructure variant of the hexagonal Laves phase MgZn2
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mg2MnGa3 – An orthorhombically distorted superstructure variant of the hexagonal Laves phase MgZn2

  • Nazar Pavlyuk , Ihor Chumak , Volodymyr Pavlyuk , Helmut Ehrenberg , Sylvio Indris , Viktor Hlukhyy und Rainer Pöttgen EMAIL logo
Veröffentlicht/Copyright: 29. August 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The Laves phase Mg2MnGa3 was synthesized from the elements by arc-melting and subsequent annealing in a silica ampoule at T = 670 K. The structure of Mg2MnGa3 was refined from single-crystal X-ray diffractometer data: URe2 type, Cmcm, a = 543.24(1), b = 869.59(3), c = 858.58(2) pm, wR2 = 0.0556, 273 F 2 values and 24 variables. The manganese and gallium atoms form a three-dimensional network of corner- and face-sharing MnGa3 tetrahedra that derive as a ternary ordering variant from the hexagonal Laves phase MgZn2. The structures of the distortion and coloring variants, i.e., MgZn2, URe2, Mg2Cu3Si and Mg2MnGa3 are discussed on the basis of a Bärnighausen tree. The electronic structure calculation data indicate that in addition to the metallic type of bonding an additional covalent interaction appears between the Ga–Ga and Mn–Ga atoms.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgements

We thank Dipl.-Ing. U. Ch. Rodewald for the intensity data collection.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Villars, P., Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2021/22); ASM International®: Materials Park: Ohio (USA), 2021.Suche in Google Scholar

2. Parthé, E. Elements of Inorganic Structural Chemistry: Selected Efforts to Predict Structural Features, 2nd ed.; K. Sutter Parthé Publisher: Petit-Lancy, Switzerland, 1996. http://archive-ouverte.unige.ch/unige:97818 (accessed Jul 22, 2022).Suche in Google Scholar

3. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Anorg. Allg. Chem. 2021, 647, 75–80; https://doi.org/10.1002/zaac.202000362.Suche in Google Scholar

4. Andersson, S., Hyde, B. G. J. Solid State Chem. 1974, 9, 92–101; https://doi.org/10.1016/0022-4596(74)90059-0.Suche in Google Scholar

5. Andersson, S. Angew. Chem., Int. Ed. Engl. 1983, 22, 69–81; https://doi.org/10.1002/anie.198300693.Suche in Google Scholar

6. Parthé, E., Chabot, B., Cenzual, K. Chimia 1985, 39, 164–174.Suche in Google Scholar

7. Komura, Y., Nakaue, A., Mitarai, M. Acta Crystallogr. 1972, B28, 727–732; https://doi.org/10.1107/s0567740872003097.Suche in Google Scholar

8. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Naturforsch. 2021, 76b, 345–354.10.1515/znb-2021-0052Suche in Google Scholar

9. Seidel, S., Pöttgen, R. Z. Anorg. Allg. Chem. 2017, 643, 261–265; https://doi.org/10.1002/zaac.201600422.Suche in Google Scholar

10. Eustermann, F., Pominov, A., Pöttgen, R. Z. Anorg. Allg. Chem. 2018, 644, 1297–1303; https://doi.org/10.1002/zaac.201800287.Suche in Google Scholar

11. Noréus, D., Eriksson, L., Göthe, L., Werner, P.-E. J. Less-Common Met. 1985, 107, 345–349.10.1016/0022-5088(85)90093-1Suche in Google Scholar

12. Horyń, R. J. Less-Common Met. 1977, 56, 103–111.10.1016/0022-5088(77)90223-5Suche in Google Scholar

13. Seidel, S., Janka, O., Benndorf, C., Mausolf, B., Haarmann, F., Eckert, H., Heletta, L., Pöttgen, R. Z. Naturforsch. 2017, 72b, 289–303; https://doi.org/10.1515/znb-2016-0265.Suche in Google Scholar

14. Osters, O., Nilges, T., Schöneich, M., Schmidt, P., Rothballer, J., Pielnhofer, F., Weihrich, R. Inorg. Chem. 2012, 51, 8119–8127; https://doi.org/10.1021/ic3005213.Suche in Google Scholar PubMed

15. Hatt, B. A. Acta Crystallogr. 1961, 14, 119–123; https://doi.org/10.1107/s0365110x61000516.Suche in Google Scholar

16. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891.10.1002/zaac.201400023Suche in Google Scholar

17. Block, T., Seidel, S., Pöttgen, R. Z. Kristallogr. 2022, 237, 215–218; https://doi.org/10.1515/zkri-2022-0021.Suche in Google Scholar

18. Frank, F. C., Kasper, J. S. Acta Crystallogr. 1958, 11, 184–190; https://doi.org/10.1107/s0365110x58000487.Suche in Google Scholar

19. Frank, F. C., Kasper, J. S. Acta Crystallogr. 1959, 12, 483–499; https://doi.org/10.1107/s0365110x59001499.Suche in Google Scholar

20. Komura, Y. Acta Crystallogr. 1962, 15, 770–778; https://doi.org/10.1107/s0365110x62002017.Suche in Google Scholar

21. Haydock, R., Johannes, R. L. J. Phys. F Met. Phys. 1975, 5, 2055–2067; https://doi.org/10.1088/0305-4608/5/11/017.Suche in Google Scholar

22. Komura, Y., Tokunaga, K. Acta Crystallogr. 1980, B36, 1548–1554; https://doi.org/10.1107/s0567740880006565.Suche in Google Scholar

23. Ohta, Y., Pettifor, D. G. J. Phys.: Condens. Matter 1990, 2, 8189–8194; https://doi.org/10.1088/0953-8984/2/41/006.Suche in Google Scholar

24. Nesper, R. Angew. Chem., Int. Ed. Engl. 1991, 30, 789–817; https://doi.org/10.1002/anie.199107891.Suche in Google Scholar

25. Johnston, R. L., Hoffmann, R. Z. Anorg. Allg. Chem. 1992, 616, 105–120; https://doi.org/10.1002/zaac.19926161017.Suche in Google Scholar

26. Nesper, R., Miller, G. J. J. Alloys Compd. 1993, 197, 109–121; https://doi.org/10.1016/0925-8388(93)90628-z.Suche in Google Scholar

27. Kubota, Y., Takata, M., Sakata, M., Ohba, T., Kifune, K., Tadaki, T. J. Phys.: Condens. Matter 2000, 12, 1253–1259; https://doi.org/10.1088/0953-8984/12/7/309.Suche in Google Scholar

28. Stein, F., Palm, M., Sauthoff, G. Intermetallics 2004, 12, 713–720; https://doi.org/10.1016/j.intermet.2004.02.010.Suche in Google Scholar

29. Stein, F., Palm, M., Sauthoff, G. Intermetallics 2005, 13, 1056–1074; https://doi.org/10.1016/j.intermet.2004.11.001.Suche in Google Scholar

30. Gschneidner, K. A.Jr., Pecharsky, V. K. Z. Kristallogr. 2006, 221, 375–381.10.1524/zkri.2006.221.5-7.375Suche in Google Scholar

31. Chen, W., Sun, J. Phys. B 2006, 382, 279–284; https://doi.org/10.1016/j.physb.2006.02.031.Suche in Google Scholar

32. Zhang, C.-W. Phys. B 2008, 403, 2088–2092; https://doi.org/10.1016/j.physb.2007.11.033.Suche in Google Scholar

33. Ormeci, A., Simon, A., Grin, Y. Angew. Chem. Int. Ed. 2010, 49, 8997–9001; https://doi.org/10.1002/anie.201001534.Suche in Google Scholar PubMed

34. Steurer, W., Dshemuchadse, J. Intermetallics: Structures, Properties, and Statistics, IUCr Monographs on Crystallography, Vol. 26; Oxford University Press: New York, 2016.10.1093/acprof:oso/9780198714552.001.0001Suche in Google Scholar

35. Siggelkow, L., Hlukhyy, V., Fässler, T. F. Z. Anorg. Allg. Chem. 2017, 643, 1424–1430; https://doi.org/10.1002/zaac.201700180.Suche in Google Scholar

36. Pöttgen, R., Johrendt, D. Intermetallics, 2nd ed.; De Gruyter: Berlin, 2019.10.1515/9783110636727Suche in Google Scholar

37. Chumak, I., Pavlyuk, V., Hlukhyy, V., Pöttgen, R. In 9th Int. Conf. Crystal Chem. Intermet. Compd., Lviv, Ukraine, 2005; p. 83.Suche in Google Scholar

38. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Suche in Google Scholar

39. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Suche in Google Scholar

40. Andersen, O. K. Phys. Rev. B 1975, 12, 3060–3083; https://doi.org/10.1103/physrevb.12.3060.Suche in Google Scholar

41. Skriver, H. The LMTO Method; Springer: Berlin, 1984.10.1007/978-3-642-81844-8Suche in Google Scholar

42. Phariseau, P., Temmerman, M., Eds. The Electronic Structure of Complex Systems; Plenum Press: New York, 1984.10.1007/978-1-4613-2405-8Suche in Google Scholar

43. Krier, G., Jepsen, O., Burkhardt, A., Andersen, O. K. The TB-LMTOASA Program (Version 4.7); Max-Planck-Institut für Festkörperforschung: Stuttgart (Germany), 1995.Suche in Google Scholar

44. von Barth, U., Hedin, L. J. Phys. C: Solid State Phys. 1972, 5, 1629–1642; https://doi.org/10.1088/0022-3719/5/13/012.Suche in Google Scholar

45. Dronskowski, R., Blöchl, P. E. J. Phys. Chem. 1993, 97, 8617–8624; https://doi.org/10.1021/j100135a014.Suche in Google Scholar

46. Becke, A. D., Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397–5403; https://doi.org/10.1063/1.458517.Suche in Google Scholar

47. Eck, B. wxDragon (version 1.6.6); Aachen, 1994–2010. http://www.ssc.rwth-aachen.de.Suche in Google Scholar

48. Sheldrick, G. M. Shelxs-97, Program for the Solution of Crystal Structures; University of Göttingen: Göttingen (Germany), 1997.Suche in Google Scholar

49. Sheldrick, G. M. Shelxl-97, Program for Crystal Structure Refinement; University of Göttingen: Göttingen (Germany), 1997.Suche in Google Scholar

50. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139.Suche in Google Scholar

51. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519.10.1002/zaac.200400250Suche in Google Scholar

52. Müller, U. Relating crystal structures by group-subgroup relations. In International Tables for Crystallography, Volume A1, Symmetry Relations Between Space Groups; Wondratschek, H., Müller, U., Eds.; John Wiley & Sons: Chichester, 2010, pp. 44–56.10.1107/97809553602060000795Suche in Google Scholar

53. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen–Anwendungen der kristallographischen Gruppentheorie in der Kristallchemie; Vieweg + Teubner Verlag: Wiesbaden, 2011.10.1007/978-3-8348-8342-1_5Suche in Google Scholar

54. Witte, H. Z. Angew. Mineral. 1938, 1, 255–268.Suche in Google Scholar

55. Suryanarayana, C. J. Less-Common Met. 1974, 35, 347–352; https://doi.org/10.1016/0022-5088(74)90248-3.Suche in Google Scholar

56. Inoue, K., Nakamura, Y., Ikeda, Y., Bando, Y., Tsvyashchenko, A. V., Fomicheva, L. N. J. Phys. Soc. Jpn. 1995, 64, 4901–4905; https://doi.org/10.1143/jpsj.64.4901.Suche in Google Scholar

57. Ott, H. R., Hulliger, F., Delsing, P., Rudigier, H., Fisk, Z. J. Less-Common Met. 1986, 124, 235–243; https://doi.org/10.1016/0022-5088(86)90496-0.Suche in Google Scholar

58. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar

59. Meissner, H. G., Schubert, K. Z. Metallkd. 1965, 56, 523–530.10.1515/ijmr-1965-560807Suche in Google Scholar

60. Kim, S.-H., Boström, M., Seo, D.-K. J. Am. Chem. Soc. 2008, 130, 1384–1391; https://doi.org/10.1021/ja0765924.Suche in Google Scholar PubMed

61. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Suche in Google Scholar

62. Smith, G. S., Johnson, Q., Wood, D. H. Acta Crystallogr. 1969, B25, 554–557; https://doi.org/10.1107/s0567740869002548.Suche in Google Scholar

63. Smith, G. S., Mucker, K. F., Johnson, Q., Wood, D. H. Acta Crystallogr. 1969, B25, 549–553; https://doi.org/10.1107/s0567740869002536.Suche in Google Scholar

Received: 2022-07-18
Accepted: 2022-08-02
Published Online: 2022-08-29
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2022-0109/html
Button zum nach oben scrollen