Abstract
The isothermal section of the Sc–Co–In system at T = 870 K has been constructed using X-ray powder diffraction and SEM/EDX data. At the studied temperature, nine ternary compounds are formed: Sc50Co12.5In3.5 (Ag7+x
Mg24−x
-type structure, space group Fm
Acknowledgements
The authors thank R. Ya. Serkiz (Laboratory of Low Temperature Investigations, Ivan Franko National University of Lviv) for collecting the SEM/EDX data.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Kalychak, Y. M., Zaremba, V. I., Pöttgen, R., Lukachuk, M., Hoffmann, R. D. Rare earth-transition metal-indides. In Handbook on the Physics and Chemistry of Rare Earths; GschneidnerJr.K. A., Bünzli, J. C. G., Pecharsky, V. K., Eds., Vol. 34. Elsevier: Amsterdam, 2005, pp. 1–133.10.1016/S0168-1273(04)34001-8Search in Google Scholar
2. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (Release 2021/22); ASM International®: Materials Park, Ohio (USA), 2021.Search in Google Scholar
3. Kalychak, Y. M. Metally 1998, 4, 110–118.10.1111/j.1559-3584.1998.tb02937.xSearch in Google Scholar
4. Kalychak, Y. M. Ukr J. Chem. 1998, 64, 15–20.10.1108/07363769810202718Search in Google Scholar
5. Zaremba, V., Dzevenko, M., Nychyporuk, G., Kalychak, Y. Visn. Lviv Univ. Ser. Chem. 2021, 62, 18–27; https://doi.org/10.30970/vch.6201.018.Search in Google Scholar
6. Zaremba, V., Dzevenko, M., Pöttgen, R., Kalychak, Y. Z. Naturforsch. 2019, 74b, 613–618; https://doi.org/10.1515/znb-2019-0083.Search in Google Scholar
7. Dzevenko, M., Tyvanchuk, Y., Demidova, C., Lukachuk, M., Kalychak, Y. Visn. Lviv Univ. Ser. Chem. 2014, 55, 21–28.Search in Google Scholar
8. Tyvanchuk, Y. B., Zaremba, V. I., Akselrud, L. G., Szytula, A., Kalychak, Y. M. J. Alloys Compd. 2017, 704, 717–723; https://doi.org/10.1016/j.jallcom.2017.02.023.Search in Google Scholar
9. Dzevenko, M., Tyvanchuk, Y., Bratash, L., Zaremba, V., Havela, L., Kalychak, Y. J. Solid State Chem. 2011, 184, 2707–2712; https://doi.org/10.1016/j.jssc.2011.08.006.Search in Google Scholar
10. Tyvanchuk, Y. B., Lukachuk, M., Pöttgen, R., Szytuła, A., Kalychak, Y. M. Z. Naturforsch. 2015, 70b, 665–670; https://doi.org/10.1515/znb-2015-0075.Search in Google Scholar
11. Kalychak, Y. M. Visn. Lviv Univ. Ser. Chem. 1999, 38, 70–73.Search in Google Scholar
12. Dzevenko, M., Hamyk, A., Tyvanchuk, Y., Kalychak, Y. Cent. Eur. J. Chem. 2013, 11, 604–609; https://doi.org/10.2478/s11532-012-0195-y.Search in Google Scholar
13. Gabay, A. M., Hadjipanayis, G. C. J. Alloys Compd. 2010, 500, 161–166; https://doi.org/10.1016/j.jallcom.2010.03.247.Search in Google Scholar
14. Gulay, N. L., Tyvanchuk, Y. B., Kalychak, Y. M., Kaczorowski, D. J. Alloys Compd. 2018, 731, 222–228; https://doi.org/10.1016/j.jallcom.2017.10.023.Search in Google Scholar
15. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Naturforsch. 2020, 75b, 799–803; https://doi.org/10.1515/znb-2020-0104.Search in Google Scholar
16. Zaremba, R. I., Kalychak, Y. M., Rodewald, U. C., Pöttgen, R., Zaremba, V. I. Z. Naturforsch. 2006, 61b, 942–948; https://doi.org/10.1515/znb-2006-0803.Search in Google Scholar
17. Tyvanchuk, Y., Gulay, N., Bigun, I., Galadzhun, Y., Kalychak, Y. Z. Naturforsch. 2015, 70b, 283–287; https://doi.org/10.1515/znb-2014-0216.Search in Google Scholar
18. Gulay, N., Tyvanchuk, Y., Kalychak, Y. Visn. Lviv Univ. Ser. Chem. 2017, 58, 63–68.Search in Google Scholar
19. Gulay, N., Tyvanchuk, Y., Daszkiewicz, M., Stelmakhovych, B., Kalychak, Y. Z. Naturforsch. 2019, 74b, 289–295; https://doi.org/10.1515/znb-2018-0275.Search in Google Scholar
20. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Anorg. Allg. Chem. 2021, 647, 75–80; https://doi.org/10.1002/zaac.202000362.Search in Google Scholar
21. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Naturforsch. 2021, 76b, 345–354.10.1515/znb-2021-0052Search in Google Scholar
22. Gulay, N., Daszkiewicz, M., Tyvanchuk, Y., Kalychak, Y. Visn. Lviv Univ. Ser. Chem. 2018, 59, 60–66; https://doi.org/10.30970/vch.5901.060.Search in Google Scholar
23. Gulay, N., Tyvanchuk, Y., Daszkiewicz, M., Kaczorowski, D., Kalychak, Y. Abstr. XXth Ukr. Conf. Inorg. Chem., Dnipro, 2018; p. 111.Search in Google Scholar
24. Massalsky, T. B., Ed. Binary Alloy Phase Diagrams. American Society for Metals: Metal Park, Ohio, Vols. 1–3, 1986.Search in Google Scholar
25. Schöbel, J. D., Stadelmaier, H. H. Z. Metallkd. 1970, 61, 342–343.Search in Google Scholar
26. Markiv, V. Y., Gavrilenko, I. S., Pet’kov, V. V., Belyavina, N. N. Metallofizika 1978, 73, 39–45.Search in Google Scholar
27. Yatsenko, S. P., Semyannikov, A. A., Shakarov, H. O., Fedorova, E. G. J. Less-Common Met. 1983, 90, 95–108; https://doi.org/10.1016/0022-5088(83)90121-2.Search in Google Scholar
28. Palenzona, A., Manfrinetti, P., Palenzona, R. J. Alloys Compd. 1996, 243, 182–185; https://doi.org/10.1016/s0925-8388(96)02402-4.Search in Google Scholar
29. Gulay, N. L., Kösters, J., Kalychak, Y. M., Matar, S. F., Rabenbauer, A., Nilges, T., Pöttgen, R. Z. Kristallogr. 2022, 237, 239–248; https://doi.org/10.1515/zkri-2022-0020.Search in Google Scholar
30. Kraus, W., Nolze, G. PowderCell for Windows (Version 2.4); Federal Institute for Materials Research and Testing: Berlin (Germany), 2000.Search in Google Scholar
31. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar
32. Akselrud, L., Grin, Y. J. Appl. Crystallogr. 2014, 47, 803–805; https://doi.org/10.1107/s1600576714001058.Search in Google Scholar
33. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar
34. Kalychak, Y. M., Akselrud, L. G., Zaremba, V. I., Baranyak, V. M. Dopov. Akad. Nauk Ukr. RSR, Ser. B 1984, 8, 35–37.Search in Google Scholar
35. Kalychak, Y. M., Zaremba, V. I., Stepien-Damm, J., Galadzhun, Y. V., Akselrud, L. G. Kristallografia 1998, 43, 17–20.Search in Google Scholar
36. Dzevenko, M. V., Zaremba, R. I., Hlukhyy, V. H., Rodewald, U. C., Pöttgen, R., Kalychak, Y. M. Z. Anorg. Allg. Chem. 2007, 633, 724–728; https://doi.org/10.1002/zaac.200600328.Search in Google Scholar
37. Gulay, N. L., Kösters, J., Kalychak, Y. M., Pöttgen, R. Z. Naturforsch. 2020, 75b, 715–720; https://doi.org/10.1515/znb-2020-0048.Search in Google Scholar
38. Gulay, N. L., Kalychak, Y. M., Reimann, M. K., Paulsen, C., Kösters, J., Pöttgen, R. Monatsh. Chem. 2020, 151, 1673–1679; https://doi.org/10.1007/s00706-020-02701-7.Search in Google Scholar
39. Kersting, M., Rodewald, U. C., Pöttgen, R. Z. Kristallogr. 2015, 230, 151–155; https://doi.org/10.1515/zkri-2014-1831.Search in Google Scholar
40. Gulay, N. L., Osthues, H., Amirjalayer, S., Doltsinis, N. L., Reimann, M. K., Kalychak, Y. M., Pöttgen, R. Dalton Trans. 2022, to be submitted.Search in Google Scholar
41. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar
42. Lukachuk, M., Zaremba, V. I., Hoffmann, R. D., Pöttgen, R. Z. Naturforsch. 2004, 59b, 182–189; https://doi.org/10.1515/znb-2004-0210.Search in Google Scholar
43. Kalychak, Y. M. J. Alloys Compd. 1999, 291, 80–88; https://doi.org/10.1016/s0925-8388(99)00290-x.Search in Google Scholar
44. Sojka, L., Daszkiewicz, M., Manyako, M., Belan, B., Marciniak, B., Rozycka-Sokolowska, E., Kalychak, Y. Proc. Shevchenko Sci. Soc., Ser. Chem. and Biochem. 2007, 18, 174–182.Search in Google Scholar
45. Thimmaiah, S., Weber, J., Miller, G. J. Z. Anorg. Allg. Chem. 2009, 635, 1831–1839; https://doi.org/10.1002/zaac.200900222.Search in Google Scholar
46. Zaremba, V. I., Muts, I. R., Rodewald, U. C., Hlukhyy, V., Pöttgen, R. Z. Anorg. Allg. Chem. 2004, 630, 1903–1907; https://doi.org/10.1002/zaac.200400187.Search in Google Scholar
47. Lukachuk, M., Rodewald, U. C., Zaremba, V. I., Hoffmann, R. D., Pöttgen, R. Z. Anorg. Allg. Chem. 2004, 630, 2253–2261; https://doi.org/10.1002/zaac.200400160.Search in Google Scholar
48. Khan, Y., Schubert, K. J. Less-Common Met. 1970, 20, 266–268; https://doi.org/10.1016/0022-5088(70)90071-8.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Intermediate ytterbium valence in YbRhSn2
- Intermetallic compounds RE2Ga2Mg (RE = Tb–Tm, Lu) with Mo2B2Fe-type structure
- Synthesis, crystal structure and magnetic properties of mer-tricyanidoiron(III) precursor-based 1D heterobimetallic complexes
- The ternary system Sc–Co–In at 870 K: the isothermal section and the crystal structures of the compounds
- High-pressure synthesis of borate-nitrates: crystal structure of M3B7O13(NO3) (M = Co2+, Ni2+, Cu2+, Zn2+, Cd2+)
- Mg2MnGa3 – An orthorhombically distorted superstructure variant of the hexagonal Laves phase MgZn2
- Lu26 T 17–x In x (T = Rh, Ir, Pt) – first indium intermetallics with Sm26Co11Ga6-type structure
- Orthoamide und Iminiumsalze, CVIa. Kondensationsreaktionen von Orthoamiden der Alkincarbonsäuren mit CH-aciden Methylheterocyclen
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Intermediate ytterbium valence in YbRhSn2
- Intermetallic compounds RE2Ga2Mg (RE = Tb–Tm, Lu) with Mo2B2Fe-type structure
- Synthesis, crystal structure and magnetic properties of mer-tricyanidoiron(III) precursor-based 1D heterobimetallic complexes
- The ternary system Sc–Co–In at 870 K: the isothermal section and the crystal structures of the compounds
- High-pressure synthesis of borate-nitrates: crystal structure of M3B7O13(NO3) (M = Co2+, Ni2+, Cu2+, Zn2+, Cd2+)
- Mg2MnGa3 – An orthorhombically distorted superstructure variant of the hexagonal Laves phase MgZn2
- Lu26 T 17–x In x (T = Rh, Ir, Pt) – first indium intermetallics with Sm26Co11Ga6-type structure
- Orthoamide und Iminiumsalze, CVIa. Kondensationsreaktionen von Orthoamiden der Alkincarbonsäuren mit CH-aciden Methylheterocyclen