Lax Pair, Conservation Laws, Solitons, and Rogue Waves for a Generalised Nonlinear Schrödinger–Maxwell–Bloch System under the Nonlinear Tunneling Effect for an Inhomogeneous Erbium-Doped Silica Fibre
Abstract
Under investigation in this article is a generalised nonlinear Schrödinger-Maxwell-Bloch system for the picosecond optical pulse propagation in an inhomogeneous erbium-doped silica optical fibre. Lax pair, conservation laws, Darboux transformation, and generalised Darboux transformation for the system are constructed; with the one- and two-soliton solutions, the first- and second-order rogue waves given. Soliton propagation is discussed. Nonlinear tunneling effect on the solitons and rogue waves are investigated. We find that (i) the detuning of the atomic transition frequency from the optical pulse frequency affects the velocity of the pulse when the detuning is small, (ii) nonlinear tunneling effect does not affect the energy redistribution of the soliton interaction, (iii) dispersion barrier/well has an effect on the soliton velocity, whereas nonlinear well/barrier does not, (iv) nonlinear well/barrier could amplify/compress the solitons or rogue waves in a smoother manner than the dispersion barrier/well, and (v) dispersion barrier could “attract” the nearby rogue waves, whereas the dispersion well has a repulsive effect on them.
Acknowledgments
We express our sincere thanks to the editors, referees, and all the members of our discussion group for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant No. 11272023 and by the Open Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) under Grant No. IPOC2013B008.
References
[1] G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, San Diego, 2012.10.1016/B978-0-12-397023-7.00011-5Suche in Google Scholar
[2] A. I. Maimistov, Quantum Electron. 40, 756 (2010).10.1070/QE2010v040n09ABEH014396Suche in Google Scholar
[3] Z. Y. Sun, Y. T. Gao, X. Yu, W. J. Liu, and Y. Liu, Phys. Rev. E 80, 066608 (2009).10.1103/PhysRevE.80.066608Suche in Google Scholar
[4] M. M. Mani Rajan, A. Mahalingam, and A. Uthayakumar, Ann. Phys. 346, 1 (2014).10.1016/j.aop.2014.03.012Suche in Google Scholar
[5] X. Y. Xie, B. Tian, W. R. Sun, Y. Sun, and D. Y. Liu, J. Mod. Opt. 62, 1374 (2015).10.1080/09500340.2015.1039944Suche in Google Scholar
[6] G. I. Stegeman and M. Segev, Optical Spatial Solitons and Their Interactions: Universality and Diversity, Science 286, 1518 (1999).10.1126/science.286.5444.1518Suche in Google Scholar
[7] S. Trillo and W. E. Torruellas, Spatial Solitons, Springer, Berlin, 2001.10.1007/978-3-540-44582-1Suche in Google Scholar
[8] O. Cohen, R. Uzdin, T. Carmon, J. W. Fleischer, M. Segev, and S. Odoulov, Phys. Rev. Lett. 89, 133901 (2002).10.1103/PhysRevLett.89.133901Suche in Google Scholar
[9] O. Lahav, H. Gurgov, P. Sidorenko, O. Peleg, L. Levi, et al. Opt. Lett. 37, 5196 (2012).10.1364/OL.37.005196Suche in Google Scholar
[10] R. Wang, Z. Wu, Y. Zhang, Z. Zhang, C. Yuan, et al. Opt. Express 20, 14168 (2012).10.1364/OE.20.014168Suche in Google Scholar
[11] Z. Li, L. Li, H. Tian, and G. Zhou, Phys. Rev. Lett. 84, 4096 (2000).10.1103/PhysRevLett.84.4096Suche in Google Scholar
[12] K. Porsezian and K. Nakkeeran, Phys. Lett. A 206, 183 (1995).10.1016/0375-9601(95)00607-5Suche in Google Scholar
[13] Y.S. Xue, B. Tian, W. B. Ai, M. Li, and P. Wang, Opt. Laser Technol. 48, 153 (2013).10.1016/j.optlastec.2012.09.026Suche in Google Scholar
[14] D. W. Zuo, Y. T. Gao, L. Xue, Y. J. Feng, and Y. H. Sun, Appl. Math. Lett. 40, 78 (2015).10.1016/j.aml.2014.07.016Suche in Google Scholar
[15] N. Aközbek, S. John, Phys. Rev. E 58, 3876 (1998).10.1103/PhysRevE.58.3876Suche in Google Scholar
[16] S. L. McCall and E. L. Hahn, Phys. Rev. 183, 457 (1969).10.1103/PhysRev.183.457Suche in Google Scholar
[17] M. Nakazawa, K. Suzuki, Y. Kimura, H. Kubota, Phys. Rev. A 45, R2682 (1992).10.1103/PhysRevA.45.R2682Suche in Google Scholar
[18] G. Kurizki, D. Petrosyan, T. Opatrny, M. Blaauboer, and B. Malomed, J. Opt. Soc. Am. B 19, 2066 (2002).10.1364/JOSAB.19.002066Suche in Google Scholar
[19] H. Y. Tseng and S. Chi, Phys. Rev. E 66, 056606 (2002).10.1103/PhysRevE.66.056606Suche in Google Scholar PubMed
[20] S. John and V. I. Rupasov, Europhys. Lett. 46, 326 (1999).10.1209/epl/i1999-00264-2Suche in Google Scholar
[21] B. Kalithasan, K. Porsezian, P. T. Dinda, and B.A. Malomed, J. Opt. A 11, 045205 (2009).10.1088/1464-4258/11/4/045205Suche in Google Scholar
[22] A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves, Kluwer, London, 1999.10.1007/978-94-017-2448-7Suche in Google Scholar
[23] A. I. Maimistov and E. A. Manykin, Sov. Phys. JETP 58, 685 (1983).Suche in Google Scholar
[24] G. L. Lamb Jr, Elements of Soliton Theory, Wiley, New York, 1980.Suche in Google Scholar
[25] K. Nakkeeran and K. Porsezian, J. Mod. Opt. 43, 693 (1996).10.1080/09500349608232776Suche in Google Scholar
[26] K. Porsezian and K. Nakkeeran, Phys. Lett. A 206, 183 (1995).10.1016/0375-9601(95)00607-5Suche in Google Scholar
[27] R. A. Vlasov and E.V. Doktorov, Inhomogeneous Optical Solitons in the Resonance Kerr-type Media. Dokl. Akad. Nauk BSSR 26, 322 (1982).Suche in Google Scholar
[28] E. V. Doktorov and R. A. Vlasov, J. Mod. Opt. 30, 223 (1983).10.1080/713821151Suche in Google Scholar
[29] A. I. Maimistov and E. A. Manykin, Sov. Phys. JETP 58, 685 (1983).10.1136/adc.58.9.685Suche in Google Scholar
[30] S. Kakei and J. Satsuma, J. Phys. Soc. Jpn. 63, 885 (1994).10.1143/JPSJ.63.885Suche in Google Scholar
[31] M. Nakazawa, E. Yamada, and H. Kubota, Phys. Rev. Lett. 66, 2625 (1991).10.1103/PhysRevLett.66.2625Suche in Google Scholar
[32] K. Porsezian and K. Nakkeeran, J. Mod. Opt. 42, 1953 (1995).10.1080/09500349514551691Suche in Google Scholar
[33] J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, Nat. Phys. 3, 597 (2007).10.1038/nphys705Suche in Google Scholar
[34] A. C. Newell, J. Math. Phys. 19, 1126 (1978).10.1063/1.523759Suche in Google Scholar
[35] V. N. Serkin and T. Y. L. Belyaeva, JETP Lett. 74, 573 (2001).10.1134/1.1455063Suche in Google Scholar
[36] V. N. Serkin, V. M. Chapela, J. Percino, and T. L. Belyaeva, Opt. Commun. 192, 237 (2001).10.1016/S0030-4018(01)01216-0Suche in Google Scholar
[37] M. M. Mani Rajan and A. Mahalingam, J. Math. Phys. 54, 043514 (2013).10.1063/1.4798477Suche in Google Scholar
[38] M. M. Mani Rajan, A. Mahalingam, and A. Uthayakumar, J. Opt. 14, 105204 (2012).Suche in Google Scholar
[39] S. Vijayalekshmi, M. M. Mani Rajan, A. Mahalingam, and A. Uthayakumar, J. Mod. Opt. 62, 278 (2015).10.1080/09500340.2014.975847Suche in Google Scholar
[40] M. M. Mani Rajan, J. Hakkim, A. Mahalingam, and A. Uthayakumar, Eur. Phys. J. D 67, 150 (2013).10.1140/epjd/e2013-30748-7Suche in Google Scholar
[41] M. M. Mani Rajan, A. Mahalingam, A. Uthayakumar, and K. Porsezian, Commun. Nonlinear Sci. Number. Simul. 18, 1410 (2013).10.1016/j.cnsns.2012.10.008Suche in Google Scholar
[42] C. Q. Dai, Y. Y. Wang, Q. Tian, and J. F. Zhang, Ann. Phys. 327, 512 (2012).10.1016/j.aop.2011.11.016Suche in Google Scholar
[43] H. P. Zhu, Nonlinear Dyn. 72, 873 (2013).10.1007/s11071-013-0759-1Suche in Google Scholar
[44] S. Loomba, R, Gupta, K. K. De, C. N. Kumar, and T. S. Raju, Opt. Fiber Technol. 21, 20 (2015).10.1016/j.yofte.2014.07.006Suche in Google Scholar
[45] N. Akhmediev, J. M. Soto-Crespo, J. M. and A. Ankiewicz, Phys. Lett. A 373, 2137 (2009).10.1016/j.physleta.2009.04.023Suche in Google Scholar
[46] A. R. Osborne, Nonlinear Ocean Waves and the Inverse Scattering Transform. Academic Press, New York, 2010.10.1016/S0074-6142(10)97003-4Suche in Google Scholar
[47] E. Pelinovsky and C. Kharif, Extreme ocean Waves, Springer, Berlin, 2008.10.1007/978-1-4020-8314-3Suche in Google Scholar
[48] C. Garrett and J. Gemmrich, Phys. Today 62, 62 (2009).10.1063/1.3156339Suche in Google Scholar
[49] W. R. Sun, B. Tian, H. L. Zhen, and Y. Sun, Nonlinear Dyn. 81, 725 (2015).10.1007/s11071-015-2022-4Suche in Google Scholar
[50] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature 450, 1054 (2007).10.1038/nature06402Suche in Google Scholar PubMed
[51] W. R. Sun, B. Tian, Y. Jiang, and H. L. Zhen, Phys. Rev. E 91, 023205 (2015).10.1103/PhysRevE.91.023205Suche in Google Scholar PubMed
[52] X. Y. Xie, B. Tian, W. R. Sun, and Y. Sun, Nonlinear Dyn. 81, 1349 (2015).10.1007/s11071-015-2073-6Suche in Google Scholar
[53] M. M. Mani Rajan, A. Mahalingam, and A. Uthayakumar, J. Opt. 14, 105204 (2012).10.1088/2040-8978/14/10/105204Suche in Google Scholar
[54] M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Phys. Rev. Lett. 31, 125 (1973).10.1103/PhysRevLett.31.125Suche in Google Scholar
[55] A. S. Fokas, Stud. Appl. Math 77, 253 (1987).10.1002/sapm1987773253Suche in Google Scholar
[56] W. Hereman, Int. J. Quantum Chem. 106, 278 (2006).10.1002/qua.20727Suche in Google Scholar
[57] M. Hisakado and M. Wadati, J. Phys. Soc. Jpn. 64, 408 (1995).10.1143/JPSJ.64.408Suche in Google Scholar
[58] H. L. Zhen, B. Tian, Y. F. Wang, and D. Y. Liu, Phys. Plasmas 22, 032307 (2015).10.1063/1.4913668Suche in Google Scholar
[59] H. L. Zhen, B. Tian, Y. Sun, and J. Chai, Phys. Plasmas 22, 102304 (2015).10.1063/1.4932076Suche in Google Scholar
[60] B. Guo, L. Ling, and Q. P. Liu, Phys. Rev. E 85, 026607 (2012).10.1103/PhysRevE.85.026607Suche in Google Scholar PubMed
[61] B. Yang, W. G. Zhang, H. Q. Zhang, and S. B. Pei, Phys. Scr. 88, 065004 (2013).10.1088/0031-8949/88/06/065004Suche in Google Scholar
©2016 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Theoretical Investigations on the Elastic and Thermodynamic Properties of Rhenium Phosphide
- Lax Pair, Conservation Laws, Solitons, and Rogue Waves for a Generalised Nonlinear Schrödinger–Maxwell–Bloch System under the Nonlinear Tunneling Effect for an Inhomogeneous Erbium-Doped Silica Fibre
- Effect of Trace Fe3+ on Luminescent Properties of CaWO4: Pr3+ Phosphors
- Rogue-Wave Interaction of a Nonlinear Schrödinger Model for the Alpha Helical Protein
- Multi-Scale Long-Range Magnitude and Sign Correlations in Vertical Upward Oil–Gas–Water Three-Phase Flow
- Theoretical Study of Geometries, Stabilities, and Electronic Properties of Cationic (FeS)n+ (n = 1–5) Clusters
- Explanation of the Quantum-Mechanical Particle-Wave Duality through the Emission of Watt-Less Gravitational Waves by the Dirac Equation
- Closed Analytical Solutions of the D-Dimensional Schrödinger Equation with Deformed Woods–Saxon Potential Plus Double Ring-Shaped Potential
- Solitons, Bäcklund Transformation, Lax Pair, and Infinitely Many Conservation Law for a (2+1)-Dimensional Generalised Variable-Coefficient Shallow Water Wave Equation
- The Non-Alignment Stagnation-Point Flow Towards a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Buongiorno’s Model: A Revised Model
- Rapid Communication
- Extrinsic and Intrinsic Contributions to Plasmon Peaks in Solids
Artikel in diesem Heft
- Frontmatter
- Theoretical Investigations on the Elastic and Thermodynamic Properties of Rhenium Phosphide
- Lax Pair, Conservation Laws, Solitons, and Rogue Waves for a Generalised Nonlinear Schrödinger–Maxwell–Bloch System under the Nonlinear Tunneling Effect for an Inhomogeneous Erbium-Doped Silica Fibre
- Effect of Trace Fe3+ on Luminescent Properties of CaWO4: Pr3+ Phosphors
- Rogue-Wave Interaction of a Nonlinear Schrödinger Model for the Alpha Helical Protein
- Multi-Scale Long-Range Magnitude and Sign Correlations in Vertical Upward Oil–Gas–Water Three-Phase Flow
- Theoretical Study of Geometries, Stabilities, and Electronic Properties of Cationic (FeS)n+ (n = 1–5) Clusters
- Explanation of the Quantum-Mechanical Particle-Wave Duality through the Emission of Watt-Less Gravitational Waves by the Dirac Equation
- Closed Analytical Solutions of the D-Dimensional Schrödinger Equation with Deformed Woods–Saxon Potential Plus Double Ring-Shaped Potential
- Solitons, Bäcklund Transformation, Lax Pair, and Infinitely Many Conservation Law for a (2+1)-Dimensional Generalised Variable-Coefficient Shallow Water Wave Equation
- The Non-Alignment Stagnation-Point Flow Towards a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Buongiorno’s Model: A Revised Model
- Rapid Communication
- Extrinsic and Intrinsic Contributions to Plasmon Peaks in Solids