Abstract
In this article, we investigate a fourth-order nonlinear Schrödinger equation, which governs the Davydov solitons in the alpha helical protein with higher-order effects. By virtue of the generalised Darboux transformation, higher-order rogue-wave solutions are derived. Propagation and interaction of the rogue waves are analysed: (i) Coefficients affect the existence time of the first-order rogue waves; (ii) coefficients affect the interaction time of the second- and third-order rogue waves; (iii) direction of the rogue-wave propagation remain unchanged after interaction.
Acknowledgments
We express our sincere thanks to all the members of our discussion group for their valuable comments. This work has been supported by the Foundation of Hebei Education Department of China under Grant No. QN2015051.
Appendix A
Appendix B
References
[1] S. S. Veni and M. M. Latha, Phys. Scr. 86, 025003 (2012).10.1088/0031-8949/86/02/025003Suche in Google Scholar
[2] L. Brizhik, A. Eremko, B. Piette, and W. Zakrzewski, Chem. Phys. 324, 259 (2006).10.1016/j.chemphys.2006.01.033Suche in Google Scholar
[3] A. S. Davydov, J. Theor. Biol. 38, 559 (1973).10.1016/0022-5193(73)90256-7Suche in Google Scholar
[4] M. J. Ablowitz and P. A. Clarkson, Cambridge, UK, Cambridge Univ. Press 1991.Suche in Google Scholar
[5] N. Benes, A Kasman, and K. Young, J. Nonlin. Sci. 16, 179 (2006).10.1007/s00332-005-0709-2Suche in Google Scholar
[6] I. Christov and C. I. Christov, Phys. Lett. A 372, 841 (2008).10.1016/j.physleta.2007.08.038Suche in Google Scholar
[7] A. S. Davydov and N. I. Kislukha, Phys. Status Solidi. (b) 59, 465 (1973).10.1002/pssb.2220590212Suche in Google Scholar
[8] M. Daniel and K. Deepamala, Phys. A 221, 241 (1995).10.1016/0378-4371(95)00243-ZSuche in Google Scholar
[9] M. Daniel and M. M. Latha, Phys. A 298, 351 (2001).10.1016/S0378-4371(01)00263-1Suche in Google Scholar
[10] M. Daniel and M. M. Latha, Phys. A 240, 526 (1997).10.1016/S0378-4371(97)00041-1Suche in Google Scholar
[11] A. S. Davydov, A. A. Eremko, and A. I. Segienko, Ukr. Fiz. Zh. 23, 983 (1978).Suche in Google Scholar
[12] A. A. Eremko and A. I. Sergienko, Ukr. J. Phys. 25, 2013 (1980).Suche in Google Scholar
[13] J. M. Hyman, D. W. McLaughlin, and A. C. Scott, Phys. D 3, 23 (1981).10.1016/0167-2789(81)90117-2Suche in Google Scholar
[14] D. Hennig, Phys. Rev. B 65, 174302 (2002).10.1103/PhysRevB.65.174302Suche in Google Scholar
[15] A. C. Scott, Phys. Scr. 29, 279 (1984).10.1088/0031-8949/29/3/016Suche in Google Scholar
[16] M. Daniel and M. M. Latha, Phys. Lett. A 252, 92 (1999).10.1016/S0375-9601(98)00936-0Suche in Google Scholar
[17] M. M. Latha and S. S. Veni, Phys. Scr. 83, 035001 (2011).10.1088/0031-8949/83/03/035001Suche in Google Scholar
[18] R. X. Liu, B. Tian, Y. Jiang, and P. Wang, Commun. Nonlinear Sci. Numer. Simulat. 19, 520 (2014).Suche in Google Scholar
[19] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature 405, 1054 (2007).10.1038/nature06402Suche in Google Scholar PubMed
[20] N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, Theor. Math. Phys. 72, 809 (1987).10.1007/BF01017105Suche in Google Scholar
[21] N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, Phys. Rev. E 80, 026601 (2009).10.1103/PhysRevA.80.043818Suche in Google Scholar
[22] A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, Phys. Rev. Lett. 106, 204502 (2011).10.1103/PhysRevLett.106.204502Suche in Google Scholar
[23] W. Liu, Eur. Phys. J. Plus 127, 1 (2012).10.1140/epjp/i2012-12005-3Suche in Google Scholar
[24] Q. B. Wang, D. S. Li, and M. Z. Liu, Chaos Soliton. Fract. 42, 3087 (2009).10.1016/j.chaos.2009.04.008Suche in Google Scholar
[25] D. W. Zuo, Y. T. Gao, X. Yu, Y. H. Sun, and L. Xue, Z. Naturforsch. A 70, 309 (2015).10.1515/zna-2014-0340Suche in Google Scholar
[26] D. W. Zuo, Y. T. Gao, L. Xue, and Y. J. Feng, Chaos Solitons. Fract. 69, 217 (2014).10.1016/j.chaos.2014.09.017Suche in Google Scholar
[27] H. X. Jia, J. Y. Ma, Y. J. Liu, and X. F. Liu, Ind. J. Phys. 89, 281 (2015).10.1007/s12648-014-0544-0Suche in Google Scholar
[28] X. Y. Gao, Eur. Phys. Lett. 110, 15002 (2015).10.1209/0295-5075/110/15002Suche in Google Scholar
[29] X. Y. Gao, J. Math. Phys. 56, 014101 (2015).10.7567/JJAP.56.014101Suche in Google Scholar
[30] X. Y. Gao, Ocean Eng. 96, 245 (2015).10.1016/j.oceaneng.2014.12.017Suche in Google Scholar
[31] X. Y. Gao, Z. Naturforsch. A 70, 59 (2015).10.1016/j.repl.2015.01.026Suche in Google Scholar
[32] A. Hesegawa and Y. Kodama, Oxford, UK, Oxford Univ. Press 1995.Suche in Google Scholar
©2016 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Theoretical Investigations on the Elastic and Thermodynamic Properties of Rhenium Phosphide
- Lax Pair, Conservation Laws, Solitons, and Rogue Waves for a Generalised Nonlinear Schrödinger–Maxwell–Bloch System under the Nonlinear Tunneling Effect for an Inhomogeneous Erbium-Doped Silica Fibre
- Effect of Trace Fe3+ on Luminescent Properties of CaWO4: Pr3+ Phosphors
- Rogue-Wave Interaction of a Nonlinear Schrödinger Model for the Alpha Helical Protein
- Multi-Scale Long-Range Magnitude and Sign Correlations in Vertical Upward Oil–Gas–Water Three-Phase Flow
- Theoretical Study of Geometries, Stabilities, and Electronic Properties of Cationic (FeS)n+ (n = 1–5) Clusters
- Explanation of the Quantum-Mechanical Particle-Wave Duality through the Emission of Watt-Less Gravitational Waves by the Dirac Equation
- Closed Analytical Solutions of the D-Dimensional Schrödinger Equation with Deformed Woods–Saxon Potential Plus Double Ring-Shaped Potential
- Solitons, Bäcklund Transformation, Lax Pair, and Infinitely Many Conservation Law for a (2+1)-Dimensional Generalised Variable-Coefficient Shallow Water Wave Equation
- The Non-Alignment Stagnation-Point Flow Towards a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Buongiorno’s Model: A Revised Model
- Rapid Communication
- Extrinsic and Intrinsic Contributions to Plasmon Peaks in Solids
Artikel in diesem Heft
- Frontmatter
- Theoretical Investigations on the Elastic and Thermodynamic Properties of Rhenium Phosphide
- Lax Pair, Conservation Laws, Solitons, and Rogue Waves for a Generalised Nonlinear Schrödinger–Maxwell–Bloch System under the Nonlinear Tunneling Effect for an Inhomogeneous Erbium-Doped Silica Fibre
- Effect of Trace Fe3+ on Luminescent Properties of CaWO4: Pr3+ Phosphors
- Rogue-Wave Interaction of a Nonlinear Schrödinger Model for the Alpha Helical Protein
- Multi-Scale Long-Range Magnitude and Sign Correlations in Vertical Upward Oil–Gas–Water Three-Phase Flow
- Theoretical Study of Geometries, Stabilities, and Electronic Properties of Cationic (FeS)n+ (n = 1–5) Clusters
- Explanation of the Quantum-Mechanical Particle-Wave Duality through the Emission of Watt-Less Gravitational Waves by the Dirac Equation
- Closed Analytical Solutions of the D-Dimensional Schrödinger Equation with Deformed Woods–Saxon Potential Plus Double Ring-Shaped Potential
- Solitons, Bäcklund Transformation, Lax Pair, and Infinitely Many Conservation Law for a (2+1)-Dimensional Generalised Variable-Coefficient Shallow Water Wave Equation
- The Non-Alignment Stagnation-Point Flow Towards a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Buongiorno’s Model: A Revised Model
- Rapid Communication
- Extrinsic and Intrinsic Contributions to Plasmon Peaks in Solids