Startseite Explanation of the Quantum-Mechanical Particle-Wave Duality through the Emission of Watt-Less Gravitational Waves by the Dirac Equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Explanation of the Quantum-Mechanical Particle-Wave Duality through the Emission of Watt-Less Gravitational Waves by the Dirac Equation

  • Friedwardt Winterberg EMAIL logo
Veröffentlicht/Copyright: 20. November 2015

Abstract

An explanation of the quantum-mechanical particle-wave duality is given by the watt-less emission of gravitational waves from a particle described by the Dirac equation. This explanation is possible through the existence of negative energy, and hence negative mass solutions of Einstein’s gravitational field equations. They permit to understand the Dirac equation as the equation for a gravitationally bound positive–negative mass (pole–dipole particle) two-body configuration, with the mass of the Dirac particle equal to the positive mass of the gravitational field binding the positive with the negative mass particle, and with the mass particles making a luminal “Zitterbewegung” (quivering motion), emitting a watt-less oscillating positive–negative space curvature wave. It is shown that this thusly produced “Zitterbewegung” reproduces the quantum potential of the Madelung-transformed Schrödinger equation. The watt-less gravitational wave emitted by the quivering particles is conjectured to be de Broglie’s pilot wave. The hypothesised connection of the Dirac equation to gravitational wave physics could, with the failure to detect gravitational waves by the LIGO antennas and pulsar timing arrays, give a clue to extended theories of gravity, or a correction of astrophysical models for the generation of such waves.


Corresponding author: Friedwardt Winterberg, Department of Physics, College of Science, University of Nevada, 1664 N. Virginia Street, 89557, USA, E-mail:

References

[1] R. Feynman, The Character of Physical Law, M.I.T. Press, Massachusetts, USA, and London, England, 1965, pp. 145, 156.Suche in Google Scholar

[2] E. Madelung, Z. Phys. 40, 322 (1926).10.2307/1331114Suche in Google Scholar

[3] P. R. Holland, The Quantum Theory of Motion, Cambridge University Press, New York, 1993, p. 56.Suche in Google Scholar

[4] G. Breit, Proc. Amer. Acad. 14, 553 (1928).10.1073/pnas.14.7.553Suche in Google Scholar

[5] E. Schrödinger, Berl. Berichte 1930, 416; 1931, 418.Suche in Google Scholar

[6] H. Hönl and A. Papapetrou, Z. Phys. 112, 512 (1939); 114, 478 (1939); 116, 153 (1940).Suche in Google Scholar

[7] F. Bopp, Z. Naturforsch. 3a, 564 (1948); Z.f. Physik 125, 615 (1949).10.1007/BF01331407Suche in Google Scholar

[8] F. Winterberg, Z. Naturforsch. 46a, 677 (1991).10.1515/zna-1991-0804Suche in Google Scholar

[9] H. Hönl, Physikalische Blätter 21, 16 (1965).10.1002/phbl.19650210103Suche in Google Scholar

[10] H. Bondi, Rev. Modern Phys. 29, 423 (1957).10.1103/RevModPhys.29.423Suche in Google Scholar

[11] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Pergamon Press, Addison-Wesley Publishing Company, Reading, Massachusetts, USA, 1971, p. 325.Suche in Google Scholar

[12] R. M. Shannon, V. Ravi, L. T. Lentati, P. D. Lasky, G. Hobbs, et al., Science 349, 1522 (2015).10.1126/science.aab1910Suche in Google Scholar

[13] F. Winterberg, Z. Naturforsch. 70a, 477 (2015).Suche in Google Scholar

[14] C. Van Den Broeck, arXiv: 1505.04621 VI, 18 March 2015.Suche in Google Scholar

[15] R. N. Manchester, arXiv: 1004.3602 VI, 21 April 2010.Suche in Google Scholar

[16] Claus Kiefer, Quantum Gravity, Clarendon Press, Oxford 2004.Suche in Google Scholar

[17] C. Corda, Int. J. Modern Phys. D 18, 2275 (2009).10.1142/S0218271809015904Suche in Google Scholar

[18] W. Heisenberg, private communication.Suche in Google Scholar

[19] F. Winterberg, Z. Naturforsch. 56a, 889 (2001).10.1515/zna-2001-1216Suche in Google Scholar

[20] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, J. High Energy Phys. 2 (2013).10.1007/JHEP02(2013)062Suche in Google Scholar

Received: 2015-7-9
Accepted: 2015-10-27
Published Online: 2015-11-20
Published in Print: 2016-1-1

©2016 by De Gruyter

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2015-0331/html
Button zum nach oben scrollen