Abstract
In this article we apply an approach to identify the oil–gas–water three-phase flow patterns in vertical upwards 20 mm inner-diameter pipe based on the conductance fluctuating signals. We use the approach to analyse the signals with long-range correlations by decomposing the signal increment series into magnitude and sign series and extracting their scaling properties. We find that the magnitude series relates to nonlinear properties of the original time series, whereas the sign series relates to the linear properties. The research shows that the oil–gas–water three-phase flows (slug flow, churn flow, bubble flow) can be classified by a combination of scaling exponents of magnitude and sign series. This study provides a new way of characterising linear and nonlinear properties embedded in oil–gas–water three-phase flows.
Acknowledgments
This study was supported by National Natural Science Foundation of China (Grant Nos. 51527805, 41174109) and Key Laboratory of Green Chemical Process (Wuhan Institute of Technology), Ministry of Education of China (Grant No. GCP201407).
References
[1] M. R. Tek, J. Petrol. Sci. Technol. 13, 1029 (1961).10.2118/1657-G-PASuche in Google Scholar
[2] A. R. Shean, M. S. Thesis, MIT, Cambridge, MA 1976.Suche in Google Scholar
[3] P. L. Spedding, G. S. Woods, R. S. Raghunathan, and J. K. Watterson, Chem. Eng. Res. Des. 78, 404 (2000).10.1205/026387600527301Suche in Google Scholar
[4] G. F. Hewitt, Nucl. Eng. Des. 235, 1303 (2005).10.1016/j.nucengdes.2005.02.023Suche in Google Scholar
[5] H. J. Vinegar and S. L. Wellington, Rev. Sci. Instrum. 58, 96 (1987).10.1063/1.1139522Suche in Google Scholar
[6] G. S. Woods, P. L. Spedding, J. K. Watterson, and R. S. Raghunathan, Chem. Eng. Res. Des. 76, 571 (1998).10.1205/026387698525252Suche in Google Scholar
[7] A. Wegmann, J. Melke, and P. R. V. Rohr, Int. J. Multiphas. Flow 33, 484 (2007).10.1016/j.ijmultiphaseflow.2006.10.004Suche in Google Scholar
[8] E. J. Fordham, R. T. Ramos, A. Holmes, S. Simonian, and S. M. Huang, Meas. Sci. Technol. 10, 1347 (1999).10.1088/0957-0233/10/12/333Suche in Google Scholar
[9] R. T. Ramos, A. Holmes, X. Wu, and E. Dussan, Meas. Sci. Technol. 12, 871 (2001).Suche in Google Scholar
[10] P. Angeli and G. F. Hewitt, Int. J. Multiphas. Flow 26, 1117 (2000).10.1016/S0301-9322(99)00081-6Suche in Google Scholar
[11] P. Angeli and G. F. Hewitt, Chem. Eng. Sci. 55, 3133 (2000).10.1016/S0009-2509(99)00585-0Suche in Google Scholar
[12] S. A. Tjugum, B. T. Hjertaker, G. A. Johansen, Meas. Sci. Technol. 13, 1319 (2002).10.1088/0957-0233/13/8/321Suche in Google Scholar
[13] G. Oddie, H. Shi, L. J. Durlofsky, K. Aziz, B. Pfeffer, et al., Int. J. Multiphas. Flow 29, 527 (2003).10.1016/S0301-9322(03)00015-6Suche in Google Scholar
[14] Y. Taitel, D. Barnea, and J. P. Brill, Int. J. Multiphas. Flow 21, 53 (1995).10.1016/0301-9322(94)00058-RSuche in Google Scholar
[15] T. Mukherjee, G. Das, and S. Ray, AIChE J. 60, 3362 (2014).10.1002/aic.14488Suche in Google Scholar
[16] N. Brauner and D. Barnea, Chem. Eng. Sci. 41, 159 (1986).10.1016/0009-2509(86)85209-5Suche in Google Scholar
[17] S. Jayanti and G. F. Hewitt, Int. J. Multiphas. Flow 18, 847 (1992).10.1016/0301-9322(92)90063-MSuche in Google Scholar
[18] X. T. Chen and J. P. Brill, Chem. Eng. Sci. 52, 4269 (1997).10.1016/S0009-2509(97)00178-4Suche in Google Scholar
[19] Z. Y. Wang, N. D. Jin, Y. B. Zong, Z. K. Gao, and T. Wang, Chem. Eng. Sci. 65, 5226 (2010).10.1016/j.ces.2010.06.026Suche in Google Scholar
[20] Z. K. Gao and N. D. Jin, Chem. Eng. Sci. 66, 2660 (2011).10.1016/j.ces.2011.03.008Suche in Google Scholar
[21] J. Y. Zhao, N. D. Jin, and Z. K. Gao, Acta Phys. Sin. 62, 084701 (2013) (in Chinese).10.7498/aps.62.084701Suche in Google Scholar
[22] M. S. Fraguio, M. C. Cassanello, F. Larachi, and S. Limtraku, Chem. Eng. Sci. 62, 7523 (2007).10.1016/j.ces.2007.08.039Suche in Google Scholar
[23] L. Zhu, N. D. Jin, Z. K. Gao, M. Du, and Z. Y. Wang, Chin. J. Chem. Eng. 20, 870 (2012).10.1016/S1004-9541(12)60412-1Suche in Google Scholar
[24] L. T. Fan, D. Neogi, and M. Yashima, AIChE J. 36, 1529 (1990).10.1002/aic.690361008Suche in Google Scholar
[25] R. Kikuchi, A. Tsutsumi, and K. Yoshida, Chem. Eng. Sci. 51, 2865 (1996).10.1016/0009-2509(96)00166-2Suche in Google Scholar
[26] T. Yano, K. Kuramoto, A. Tsutsumi, and K. Otawara, Chem. Eng. Sci. 54, 5259 (1999).10.1016/S0009-2509(99)00248-1Suche in Google Scholar
[27] Y. Ashkenazy, P. C. Ivanov, S. Havlin, C. K. Peng, A. L. Goldberger, et al., Phys. Rev. Lett. 86, 1900 (2001).10.1103/PhysRevLett.86.1900Suche in Google Scholar
[28] Y. Ashkenazy, S. Havlin, P. C. Ivanov, C. K. Peng, V. Schulte-Frohlinda, et al., Physica A 32, 19 (2003).10.1016/S0378-4371(03)00008-6Suche in Google Scholar
[29] C. K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, Chaos 5, 82 (1995).10.1063/1.166141Suche in Google Scholar PubMed
[30] L. Zhu, N. D. Jin, Z. K. Gao, Y. B. Zong, L. S. Zhai, et al., J. Phys: Conf. Series. 364, 012067 (2012).10.1088/1742-6596/364/1/012067Suche in Google Scholar
[31] L. S. Zhai, N. D. Jin, Y. B. Zong, Z. Y. Wang, and M. Gu, Meas. Sci. Technol. 23, 344 (2012).10.1088/0957-0233/23/2/025304Suche in Google Scholar
[32] N. D. Jin, X. Zhao, J. Wang, Z. Y. Wang, X. H. Jia, et al., Meas. Sci. Technol. 19, 334 (2008).10.1088/0957-0233/19/4/045403Suche in Google Scholar
[33] D. L. Jones and R. G. Baraniuk, IEEE Trans. Signal Process. 43, 2361 (1995).10.1109/78.469854Suche in Google Scholar
[34] M. Du, N. D. Jin, Z. K. Gao, and B. Sun, Chem. Eng. Sci. 82, 144 (2012).10.1016/j.ces.2012.07.028Suche in Google Scholar
©2016 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Theoretical Investigations on the Elastic and Thermodynamic Properties of Rhenium Phosphide
- Lax Pair, Conservation Laws, Solitons, and Rogue Waves for a Generalised Nonlinear Schrödinger–Maxwell–Bloch System under the Nonlinear Tunneling Effect for an Inhomogeneous Erbium-Doped Silica Fibre
- Effect of Trace Fe3+ on Luminescent Properties of CaWO4: Pr3+ Phosphors
- Rogue-Wave Interaction of a Nonlinear Schrödinger Model for the Alpha Helical Protein
- Multi-Scale Long-Range Magnitude and Sign Correlations in Vertical Upward Oil–Gas–Water Three-Phase Flow
- Theoretical Study of Geometries, Stabilities, and Electronic Properties of Cationic (FeS)n+ (n = 1–5) Clusters
- Explanation of the Quantum-Mechanical Particle-Wave Duality through the Emission of Watt-Less Gravitational Waves by the Dirac Equation
- Closed Analytical Solutions of the D-Dimensional Schrödinger Equation with Deformed Woods–Saxon Potential Plus Double Ring-Shaped Potential
- Solitons, Bäcklund Transformation, Lax Pair, and Infinitely Many Conservation Law for a (2+1)-Dimensional Generalised Variable-Coefficient Shallow Water Wave Equation
- The Non-Alignment Stagnation-Point Flow Towards a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Buongiorno’s Model: A Revised Model
- Rapid Communication
- Extrinsic and Intrinsic Contributions to Plasmon Peaks in Solids
Artikel in diesem Heft
- Frontmatter
- Theoretical Investigations on the Elastic and Thermodynamic Properties of Rhenium Phosphide
- Lax Pair, Conservation Laws, Solitons, and Rogue Waves for a Generalised Nonlinear Schrödinger–Maxwell–Bloch System under the Nonlinear Tunneling Effect for an Inhomogeneous Erbium-Doped Silica Fibre
- Effect of Trace Fe3+ on Luminescent Properties of CaWO4: Pr3+ Phosphors
- Rogue-Wave Interaction of a Nonlinear Schrödinger Model for the Alpha Helical Protein
- Multi-Scale Long-Range Magnitude and Sign Correlations in Vertical Upward Oil–Gas–Water Three-Phase Flow
- Theoretical Study of Geometries, Stabilities, and Electronic Properties of Cationic (FeS)n+ (n = 1–5) Clusters
- Explanation of the Quantum-Mechanical Particle-Wave Duality through the Emission of Watt-Less Gravitational Waves by the Dirac Equation
- Closed Analytical Solutions of the D-Dimensional Schrödinger Equation with Deformed Woods–Saxon Potential Plus Double Ring-Shaped Potential
- Solitons, Bäcklund Transformation, Lax Pair, and Infinitely Many Conservation Law for a (2+1)-Dimensional Generalised Variable-Coefficient Shallow Water Wave Equation
- The Non-Alignment Stagnation-Point Flow Towards a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Buongiorno’s Model: A Revised Model
- Rapid Communication
- Extrinsic and Intrinsic Contributions to Plasmon Peaks in Solids