Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models
-
Rohallah Razavi
, Azam Rahmatinejad
, Tayeb Kakavand , Fariba Taheri , Maghsood Aghajani und Asghar Khooy
Abstract
In this work the nuclear level density parameters of 238U have been extracted in the back-shifted Fermi gas model (BSFGM), as well as the constant temperature model (CTM), through fitting with the recent experimental data on nuclear level densities measured by the Oslo group. The excitation functions for 238U(p,2nα)233Pa, and 238U(p,4n)235Np reactions and the fragment yields for the fragments of the 238U(p,f) reaction have been calculated using obtained level density parameters. The results are compared to their corresponding experimental values. It was found that the extracted excitation functions and the fragment yields in the CTM coincide well with the experimental values in the low-energy region. This finding is according to the claim made by the Oslo group that the extracted level densities of 238U show a constant temperature behaviour.
Acknowledgments
We would like to thank Dr. Arjan Koning for useful comments.
References
[1] A. J. Koning, S. Hilaire, and S. Goriely, Nucl. Phys. A 810, 13 (2008).10.1016/j.nuclphysa.2008.06.005Suche in Google Scholar
[2] H. A. Bethe, Phys. Rev. 50, 332 (1936).10.1103/PhysRev.50.332Suche in Google Scholar
[3] A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965).10.1139/p65-139Suche in Google Scholar
[4] M. Guttormsen, B. Jurado, J. N. Wilson, M. Aiche, L. A. Bernstein, et al., Phys. Rev. C 88, 024307 (2013).10.1103/PhysRevC.88.024307Suche in Google Scholar
[5] R. Razavi and T. Kakavand, Nucl. Technol. Radiat. 26, 69 (2011).10.2298/NTRP1103209KSuche in Google Scholar
[6] T. von Egidy, H. H. Schmidt, and A. N. Behkami, Nucl. Phys. A 481, 189 (1988).10.1016/0375-9474(88)90491-5Suche in Google Scholar
[7] T. Ericson, Nucl. Phys. 11 481 (1959).10.1016/0029-5582(59)90291-3Suche in Google Scholar
[8] T. von Egidy and D. Bucurescu, Phys. Rev. C 72, 044311 (2005).10.1103/PhysRevC.72.044311Suche in Google Scholar
[9] T. von Egidy and D. Bucurescu, Phys. Rev. C 80, 054310 (2009).10.1103/PhysRevC.80.054310Suche in Google Scholar
[10] RIPL-3 Handbook for calculation of nuclear reaction; http://www-nds.iaea.org/RIPL-3/ (2009).Suche in Google Scholar
[11] D. J. Dean and M. Hjorth-Jensen, Rev. Mod. Phys. 75, 607 (2003).10.1103/RevModPhys.75.607Suche in Google Scholar
[12] R. Razavi, Phys. Rev. C 88, 014316 (2013).10.1103/PhysRevC.88.014316Suche in Google Scholar
[13] R. Razavi, A. N. Behkami, and S. Mohammadi, Phys. Scr. 86, 045201 (2012).10.1088/0031-8949/86/04/045201Suche in Google Scholar
[14] R. Razavi, A. N. Behkami, and V. Dehghani, Nucl. Phys. A 930, 57 (2014).10.1016/j.nuclphysa.2014.07.016Suche in Google Scholar
[15] A. J. Koning, S. Hilaire, and S. Goriely, TALYS-1.6, Nuclear Research and Consultancy Group, www.talys.eu. (2013).Suche in Google Scholar
[16] A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).10.1016/S0375-9474(02)01321-0Suche in Google Scholar
[17] Y. L. Zhao, M. Tanikawa, K. Sueki, I. Nishinaka, K. Tsukada, et al., Radiochim. Acta 86, 79 (1999).10.1524/ract.1999.86.34.79Suche in Google Scholar
[18] L. F. Bellido, V. J. Robinson, and H. E. Sims, Radiochim. Acta 64, 11 (1994).10.1524/ract.1994.64.1.11Suche in Google Scholar
[19] V. A. Rubchenya, W. H. Trzaska, D. N. Vakhtin, J. Äystö, P. Dendooven, et al., Nucl. Instrum. Methods Phys. Res. A 463, 653 (2001).10.1016/S0168-9002(01)00176-0Suche in Google Scholar
©2016 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrödinger Equation
- The Modified Simple Equation Method, the Exp-Function Method, and the Method of Soliton Ansatz for Solving the Long–Short Wave Resonance Equations
- Application of the Reverberation-Ray Matrix to the Non-Fourier Heat Conduction in Functionally Graded Materials
- Rational Solutions for Lattice Potential KdV Equation and Two Semi-discrete Lattice Potential KdV Equations
- Structural, Electronic, Magnetic and Optical Properties of Ni,Ti/Al-based Heusler Alloys: A First-Principles Approach
- Ab Initio Calculations on the Structural, Mechanical, Electronic, Dynamic, and Optical Properties of Semiconductor Half-Heusler Compound ZrPdSn
- Qualitative Behaviour of Generalised Beddington Model
- Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models
- Total π-Electron Energy of Conjugated Molecules with Non-bonding Molecular Orbitals
- Investigation of Thermal Expansion and Physical Properties of Carbon Nanotube Reinforced Nanocrystalline Aluminum Nanocomposite
- Bistable Bright Optical Spatial Solitons due to Charge Drift and Diffusion of Various Orders in Photovoltaic Photorefractive Media Under Closed-Circuit Conditions
- Application of a Differential Transform Method to the Transient Natural Convection Problem in a Vertical Tube with Variable Fluid Properties
Artikel in diesem Heft
- Frontmatter
- Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrödinger Equation
- The Modified Simple Equation Method, the Exp-Function Method, and the Method of Soliton Ansatz for Solving the Long–Short Wave Resonance Equations
- Application of the Reverberation-Ray Matrix to the Non-Fourier Heat Conduction in Functionally Graded Materials
- Rational Solutions for Lattice Potential KdV Equation and Two Semi-discrete Lattice Potential KdV Equations
- Structural, Electronic, Magnetic and Optical Properties of Ni,Ti/Al-based Heusler Alloys: A First-Principles Approach
- Ab Initio Calculations on the Structural, Mechanical, Electronic, Dynamic, and Optical Properties of Semiconductor Half-Heusler Compound ZrPdSn
- Qualitative Behaviour of Generalised Beddington Model
- Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models
- Total π-Electron Energy of Conjugated Molecules with Non-bonding Molecular Orbitals
- Investigation of Thermal Expansion and Physical Properties of Carbon Nanotube Reinforced Nanocrystalline Aluminum Nanocomposite
- Bistable Bright Optical Spatial Solitons due to Charge Drift and Diffusion of Various Orders in Photovoltaic Photorefractive Media Under Closed-Circuit Conditions
- Application of a Differential Transform Method to the Transient Natural Convection Problem in a Vertical Tube with Variable Fluid Properties