Home Qualitative Behaviour of Generalised Beddington Model
Article
Licensed
Unlicensed Requires Authentication

Qualitative Behaviour of Generalised Beddington Model

  • Qamar Din EMAIL logo , Muhammad Adil Khan and Umer Saeed
Published/Copyright: December 15, 2015

Abstract

This work is related to the dynamics of a discrete-time density-dependent generalised Beddington model. Moreover, we investigate the existence and uniqueness of positive equilibrium point, boundedness character, local and global behaviours of unique positive equilibrium point, and the rate of convergence of positive solutions that converge to the unique positive equilibrium point of this model. Numerical examples are provided to illustrate theoretical discussion.

2010 AMS Mathematics Subject Classifications:: 39A30; 40A05; 92D25

Corresponding author: Qamar Din, Department of Mathematics, The University of Poonch Rawalakot, Rawalakot 12350, Pakistan, E-mail:

Acknowledgments

The authors thank the main editor and anonymous referees for their valuable comments and suggestions leading to improvement of this article. This work was partially supported by the Higher Education Commission of Pakistan.

References

[1] R. Asheghi, J. Biol. Dyn. 8, 161 (2014).10.1080/17513758.2014.927596Search in Google Scholar

[2] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York 1980.Search in Google Scholar

[3] B. S. Goh, Management and Analysis of Biological Populations, Elsevier Scientific, The Netherlands 1980.Search in Google Scholar

[4] J. D. Murray, Mathematical Biology, Springer, New York 1989.10.1007/978-3-662-08539-4Search in Google Scholar

[5] Linda J.S. Allen, An Introduction to Mathematical Biology, 1st Ed., Pearson, USA 2006.Search in Google Scholar

[6] F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, 2nd Ed., Springer, New York 2012.10.1007/978-1-4614-1686-9Search in Google Scholar

[7] L. Edelstein-Keshet, Mathematical Models in Biology, SIAM, Philadelphia, PA 2005.10.1137/1.9780898719147Search in Google Scholar

[8] Q. Din, Ad. Diff. Eq. 2013, 95 (2013).Search in Google Scholar

[9] Q. Din and T. Donchev, Chaos Soliton Fract. 54, 1 (2013).10.1016/j.chaos.2013.05.011Search in Google Scholar

[10] Q. Din and E. M. Elsayed, Comput. Ecol. Softw. 4, 89 (2014).Search in Google Scholar

[11] Q. Din, T. F. Ibrahim, and K. A. Khan, Sci. World J. 2014, Article ID 283982, 9 pages (2014).10.1155/2014/283982Search in Google Scholar PubMed PubMed Central

[12] Q. Din, Chaos Soliton Fract. 59, 119 (2014).10.1016/j.chaos.2013.12.008Search in Google Scholar

[13] Q. Din, Netw. Biol. 4, 123 (2014).Search in Google Scholar

[14] Q. Din, K. A. Khan, and A. Nosheen, Discrete Dyn. Nat. Soc. 2014, Article ID 375890, 11 pages (2014).10.1155/2014/375890Search in Google Scholar

[15] Q. Din, J. Egypt. Math. Soc. (2014), http://dx.doi.org/10.1016/j.joems.2014.08.008.10.1016/j.joems.2014.08.008Search in Google Scholar

[16] Q. Din, Ad. Diff. Eq. 2015, 119 (2015).Search in Google Scholar

[17] Q. Din, Appl. Math. Model. (2015), http://dx.doi.org/10.1016/j.apm.2015.09.012.10.1016/j.apm.2015.09.012Search in Google Scholar

[18] A. N. W Hone, M. V. Irle, and G. W. Thurura, J. Biol. Dyn. 4, 594 (2010).10.1080/17513750903528192Search in Google Scholar

[19] J. R. Beddington, C. A. Free, and J. H. Lawton, Nature 225, 58 (1975).10.1038/255058a0Search in Google Scholar

[20] S. Elaydi, Discrete Chaos: With Applications in Science and Engineering, 2nd Ed., Chapman and Hall/CRC, Boca Raton 2008.10.1201/9781420011043Search in Google Scholar

[21] S. Kapçak, Ü. Ufuktepe, and S. Elaydi, J. Biol. Dyn. 7, 233 (2013).10.1080/17513758.2013.849764Search in Google Scholar

[22] M. G. Neubert and M. Kot, Math. Biosci. 110, 45 (1992).10.1016/0025-5564(92)90014-NSearch in Google Scholar

[23] R. Kon and Y. Takeuchi, Nonlinear Anal. 47, 1383 (2001).10.1016/S0362-546X(01)00273-5Search in Google Scholar

[24] X. Yang, J. Math. Anal. Appl. 316, 161 (2006).Search in Google Scholar

[25] E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman and Hall/CRC Press, Boca Raton 2004.10.1201/9781420037722Search in Google Scholar

[26] M. Pituk, J. Diff. Eq. App. 8, 201 (2002).10.1080/10236190211954Search in Google Scholar

[27] Z. Song, K. Yang, J. Xu, and Y. Wei, Commun. Nonlinear Sci. Numer. Simul. 29, 327 (2015).Search in Google Scholar

[28] Z. Song, B. Zhen, and J. Xu, Ecol. Complex. 19, 9 (2014).10.1016/j.ecocom.2014.01.004Search in Google Scholar

[29] L. Guo, Z. Song, and J. Xu, Commun. Nonlinear Sci. Numer. Simul. 19, 2850 (2014).Search in Google Scholar

Received: 2015-10-3
Accepted: 2015-11-18
Published Online: 2015-12-15
Published in Print: 2016-2-1

©2016 by De Gruyter

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2015-0410/html
Scroll to top button