Abstract
The structural, mechanical, electronic, dynamic, and optical properties of the ZrPdSn compound crystallising into the MgAgAs structure are investigated by the ab initio calculations based on the density functional theory. The lattice constant, bulk modulus, and first derivative of bulk modulus were obtained by fitting the calculated total energy-atomic volume results to the Murnaghan equation of state. These results were compared to the previous data. The band structure and corresponding density of states (DOS) were also calculated and discussed. The elastic properties were calculated by using the stress-strain method, which shows that the MgAgAs phase of this compound is mechanically stable. The presented phonon dispersion curves and one-phonon DOS confirms that this compound is dynamically stable. In addition, the heat capacity, entropy, and free energy of ZrPdSn were calculated by using the phonon frequencies. Finally, the optical properties, such as dielectric function, reflectivity function, extinction coefficient, refractive index, and energy loss spectrum, were obtained under different pressures.
Acknowledgments
This work is supported by Balıkesir University Research Project Unit under Project No. 2012/129.
References
[1] S. Chadov, X. Qi, J. Kubler, G. H. Fecher, C. Felser, et al., Nat. Mater. 9, 541 (2010).10.1038/nmat2770Suche in Google Scholar
[2] H. Lin, A. Wray, Y. Xia, S. Xu, S. Jia, et al., Nat. Mater. 9, 546 (2010).10.1038/nmat2771Suche in Google Scholar
[3] H. -J. Zhang, S. Chadov, L. Müchler, B. Yan, X.-L. Qi, et al., Phys. Rev. Lett. 106, 156402 (2011).10.1103/PhysRevLett.106.156402Suche in Google Scholar
[4] C. Felser, G. H. Fecher, and B. Balke, Angew. Chem. Int. Ed. 46, 668 (2007).10.1002/anie.200601815Suche in Google Scholar
[5] Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, et al., Appl. Phys. Lett. 79, 4165 (2001).10.1063/1.1425459Suche in Google Scholar
[6] G. S. Nolas, J. Poon, and M. G. Kanatzidis, MRS Bull. 31, 199 (2006).10.1557/mrs2006.45Suche in Google Scholar
[7] G. D. Mahan, Good Thermoelectrics, Solid State Physics, Vol. 51, Academic Press, New York 1998, p. 81.10.1016/S0081-1947(08)60190-3Suche in Google Scholar
[8] J. Yang, H. Li, T. Wu, W. Zhang, L. Chen, et al., Adv. Funct. Mater. 18, 2880 (2008).10.1002/adfm.200701369Suche in Google Scholar
[9] Y. Kimura, A. Zama, and Y. Mishima, Collected Abstracts of the 2005 Autumn Meeting, Japan Inst. Metals, 2005, p. 85.Suche in Google Scholar
[10] Y. Hayashi, S.-W. Kim, Y. Kimura, and Y. Mishima. Proc. of TMS Symp. on Advanced Materials for Energy Conversion II, TMS, Warrendale, PA 2004, p. 367.Suche in Google Scholar
[11] P. Villars and L. D. Calvert, Pearson’s Handbook on Crystallographic Data for Intermetallic Phases, 2nd Ed., ASM International, Materials Park, OH 1991.Suche in Google Scholar
[12] P. E. Blöchl, Phys. Rev. B 50, 953 (1994).10.1002/phbl.19940501013Suche in Google Scholar
[13] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).10.1103/PhysRevB.59.1758Suche in Google Scholar
[14] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).10.1103/PhysRevB.47.558Suche in Google Scholar PubMed
[15] G. Kresse and J. Hafner, J. Phys.: Condens. Matter 6, 8245 (1994).10.1088/0953-8984/6/40/015Suche in Google Scholar
[16] G. Kresse and J. Hafner, Phys. Rev. B 49, 251 (1994).10.1103/PhysRevB.49.14251Suche in Google Scholar PubMed
[17] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).10.1016/0927-0256(96)00008-0Suche in Google Scholar
[18] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 169 (1996).10.1103/PhysRevB.54.11169Suche in Google Scholar PubMed
[19] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).10.1103/PhysRevB.13.5188Suche in Google Scholar
[20] F. D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).10.1073/pnas.30.9.244Suche in Google Scholar PubMed PubMed Central
[21] Y. Le Page and P. Saxe, Phys. Rev. B 65, 104104 (2002).10.1103/PhysRevB.65.104104Suche in Google Scholar
[22] M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon, Oxford, UK 1956.Suche in Google Scholar
[23] B. B. Karki, L. Stixrude, and J. Crain, Geophys. Res. Lett. 24, 3269 (1997).10.1029/97GL53196Suche in Google Scholar
[24] V. Tvergaard and J. W. Hutchinson, J. Am. Ceram. Soc. 71, 157 (1988).10.1111/j.1151-2916.1988.tb05022.xSuche in Google Scholar
[25] S. Q. Wang and H. Q. Ye, Phys. Stat. Sol. B 240, 45 (2003).10.1002/pssb.200301861Suche in Google Scholar
[26] M. Mattesini, R. Ahuja, and B. Johansson, Phys. Rev. B 68, 184108 (2003).10.1103/PhysRevB.68.184108Suche in Google Scholar
[27] B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, et al., Intermetallics 11, 23 (2003).10.1016/S0966-9795(02)00127-9Suche in Google Scholar
[28] S. F. Pugh, Philos. Mag. 45, 823 (1954).10.1080/14786440808520496Suche in Google Scholar
[29] K. Parlinski, PHONON software, http://wolf.ifj.edu.pl/phonon, 2008.Suche in Google Scholar
[30] S. Adachi, Properties of Group-IV, III–V, and II–VI Semiconductors, Wiley and Sons, 2005.10.1002/0470090340Suche in Google Scholar
[31] P. Ravindran, A. Delin, B. Johansson, O. Eriksson, and J. M. Wills, Phys. Rev. B, 59, 1776 (1999).10.1103/PhysRevB.59.1776Suche in Google Scholar
[32] P. Ravindran, A. Delin, R. Ahuja, B. Johansson, S. Auluck, et al., Phys. Rev. B 56, 6851 (1997).10.1103/PhysRevB.56.6851Suche in Google Scholar
©2016 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrödinger Equation
- The Modified Simple Equation Method, the Exp-Function Method, and the Method of Soliton Ansatz for Solving the Long–Short Wave Resonance Equations
- Application of the Reverberation-Ray Matrix to the Non-Fourier Heat Conduction in Functionally Graded Materials
- Rational Solutions for Lattice Potential KdV Equation and Two Semi-discrete Lattice Potential KdV Equations
- Structural, Electronic, Magnetic and Optical Properties of Ni,Ti/Al-based Heusler Alloys: A First-Principles Approach
- Ab Initio Calculations on the Structural, Mechanical, Electronic, Dynamic, and Optical Properties of Semiconductor Half-Heusler Compound ZrPdSn
- Qualitative Behaviour of Generalised Beddington Model
- Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models
- Total π-Electron Energy of Conjugated Molecules with Non-bonding Molecular Orbitals
- Investigation of Thermal Expansion and Physical Properties of Carbon Nanotube Reinforced Nanocrystalline Aluminum Nanocomposite
- Bistable Bright Optical Spatial Solitons due to Charge Drift and Diffusion of Various Orders in Photovoltaic Photorefractive Media Under Closed-Circuit Conditions
- Application of a Differential Transform Method to the Transient Natural Convection Problem in a Vertical Tube with Variable Fluid Properties
Artikel in diesem Heft
- Frontmatter
- Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrödinger Equation
- The Modified Simple Equation Method, the Exp-Function Method, and the Method of Soliton Ansatz for Solving the Long–Short Wave Resonance Equations
- Application of the Reverberation-Ray Matrix to the Non-Fourier Heat Conduction in Functionally Graded Materials
- Rational Solutions for Lattice Potential KdV Equation and Two Semi-discrete Lattice Potential KdV Equations
- Structural, Electronic, Magnetic and Optical Properties of Ni,Ti/Al-based Heusler Alloys: A First-Principles Approach
- Ab Initio Calculations on the Structural, Mechanical, Electronic, Dynamic, and Optical Properties of Semiconductor Half-Heusler Compound ZrPdSn
- Qualitative Behaviour of Generalised Beddington Model
- Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models
- Total π-Electron Energy of Conjugated Molecules with Non-bonding Molecular Orbitals
- Investigation of Thermal Expansion and Physical Properties of Carbon Nanotube Reinforced Nanocrystalline Aluminum Nanocomposite
- Bistable Bright Optical Spatial Solitons due to Charge Drift and Diffusion of Various Orders in Photovoltaic Photorefractive Media Under Closed-Circuit Conditions
- Application of a Differential Transform Method to the Transient Natural Convection Problem in a Vertical Tube with Variable Fluid Properties