Abstract
Carbon nanotube (CNT) reinforced nanocrystalline aluminum matrix composites are fabricated by a simple and effective physical mixing method with sonication. In this study, the microstructural characterisations and property evaluations of the nanocomposites were performed. The structural characterisations revealed that CNTs were dispersed, embedded, and anchored within the metal matrix. A strong interfacial adhesion appeared between CNTs and nanocrystalline aluminum as a result of the fabrication process. Raman and Fourier transform infrared spectroscopic studies also confirmed the surface adherence of CNTs with nanocrystalline aluminum matrix during the fabrication process. Thermal expansion behaviour of CNT-reinforced aluminum matrix composites was investigated up to 240°C using a dilatometer. The coefficient of thermal expansion of the nanocomposites decreased continuously with the increasing content of CNTs. The maximum reduction of 82% was found for 4 wt% CNTs in the nanocomposite. The coefficient of thermal expansion variation with CNTs was also compared with the predictions from the thermoelastic models. The expansion behaviour of the nanocomposites was correlated to the microstructure, internal stresses, and phase segregations. The electrical and thermal conductivity was also studied and was observed to decrease for all reinforced CNT weight fractions.
Acknowledgments
The authors would like to thank DRDO for providing financial support to carry out this research work under the project grant [Project No. ARMREB/CDSW/2011/135] and also to Analytical Instrumentation Research facility, Jawaharlal Nehru University (AIRF JNU) New Delhi for HR-TEM measurements.
References
[1] G. Dietrich, Aluminum: Technology, Applications and Environment: A Profile of a Modern Metal, 6th ed., Wiley, New York 1998.Suche in Google Scholar
[2] J. W. C. de Vries, M. Y. Jansen, and W. D. V. Driel, Microelectron. Reliab. 47, 444 (2007).10.1016/j.microrel.2006.05.009Suche in Google Scholar
[3] Material Expansion Coefficients: Linear Thermal Expansion Coefficients of Metals and Alloys, http://psec.uchicago.edu/thermal_coefficients/cte_metals_05517-90143.pdf (2013).Suche in Google Scholar
[4] M. K. Surappa, Sadhana 28, 319 (2003).10.1007/BF02717141Suche in Google Scholar
[5] P. Rohatgi, J. Met. 43, 10 (1991).10.1007/BF03220538Suche in Google Scholar
[6] M. Torrens, Int. Mater. Rev. 49, 325 (2004).Suche in Google Scholar
[7] N. H. Alamusi, J. Bi, M. Arai, C. Yan, J. Li, et al. Comput. Mater. Sci. 54, 249 (2012).10.1016/j.commatsci.2011.10.015Suche in Google Scholar
[8] S. R. Bakshi, D. Lahiri, and A. Agarwal, Int. Mater. Rev. 55, 41 (2010).10.1179/095066009X12572530170543Suche in Google Scholar
[9] Z. Konya, J. Zhu, K. Niesz, D. Mehn, and I. Kiricsi, Carbon 42, 2001 (2004).10.1016/j.carbon.2004.03.040Suche in Google Scholar
[10] A. M. K. Esawi, K. Morsi, A. Sayed, A. A. Gawad, and P. Borah, Mater. Sci. Eng. A 508, 167 (2009).10.1016/j.msea.2009.01.002Suche in Google Scholar
[11] B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 3rd ed., Prentice Hall, New York 2001, p. 170.Suche in Google Scholar
[12] K. Chu, C. Jia, W. Tian, X. Liang, H. Chen, et al. Composites A 41, 161 (2010).10.1016/j.compositesa.2009.10.001Suche in Google Scholar
[13] F. A. Abuilaiwi, T. Laoui, M. A. Harthi, and M. A. Atieh, Arab. J. Sci. Eng. 35, 37 (2010).Suche in Google Scholar
[14] V. T. Le, C. L. Ngo, Q. T. Le, T. T. Ngo, D. N. Nguyen, et al., Adv. Nat. Sci.: Nanosci. Nanotechnol. 4, 035017 (2013).10.1088/2043-6262/4/3/035017Suche in Google Scholar
[15] C. He, N. Zhao, C. Shi, X. Du, J. Li, et al., Adv. Mater. 19, 1128 (2007).10.1002/adma.200601381Suche in Google Scholar
[16] L. S. Schodler, Appl. Phys. Lett. 73, 3842 (1998).10.1063/1.122911Suche in Google Scholar
[17] J. Liao and M. J. Tan, Powder Technol. 208, 42 (2011).10.1016/j.powtec.2010.12.001Suche in Google Scholar
[18] S. Lemieux, S. Elomari, J. A. Nemes, and M. D. Skibo, J. Mater. Sci. 33, 4381 (1998).10.1023/A:1004437032224Suche in Google Scholar
[19] Y. Tang, H. Cong, R. Zhang, and H. M. Cheng, Carbon 42, 3260 (2004).10.1016/j.carbon.2004.07.024Suche in Google Scholar
[20] M. F. Yu, J. Eng. Mater. Technol. 126, 271 (2004).Suche in Google Scholar
[21] H. Hatta, T. Takei, and M. Taya, Mater. Sci. Eng. A 285, 99 (2000).10.1016/S0921-5093(00)00721-8Suche in Google Scholar
[22] H. Pal, V. Sharma, and M. Sharma, Int. J. Mater. Res. 105E, 1 (2014).10.1088/2053-1591/1/3/035003Suche in Google Scholar
[23] M. Sharma, H. Pal, and V. Sharma, Proc. AIP Conference 1591, 374 (2014).10.1063/1.4872607Suche in Google Scholar
[24] H. Pal and V. Sharma, Int. J. Miner. Metall. Mater. 21, 1132 (2014).10.1007/s12613-014-1019-1Suche in Google Scholar
[25] K. T. Kim, J. Eckert, G. Liu, J. M. Park, B. K. Lim, et al., Scripta Materialia 64, 181 (2011).10.1016/j.scriptamat.2010.09.039Suche in Google Scholar
[26] P. G. Koppad, H. R. A. Ram, C. S. Ramesh, K.T. Kashyap, and R. G. Koppad, J. Alloys Comp. 580, 527 (2013).10.1016/j.jallcom.2013.06.123Suche in Google Scholar
[27] A. N. Vladimir and C. D. Izarra, Nano Systems Workshop, ENS’07 Paris, France 2007, p. 49. http://documents.irevues.inist.fr/handle/2042/14131.Suche in Google Scholar
[28] S. Huxtable, D. G. Cahill, S. Shenogin, L. Xue, R. Ozisik, et al., Nat. Mater. 2, 731 (2003).10.1038/nmat996Suche in Google Scholar
[29] C. W. Nan, Z. Shi, and Y. Lin, Chem. Phys. Lett. 375, 666 (2003).10.1016/S0009-2614(03)00956-4Suche in Google Scholar
[30] C. W. Nan, G. Lui, Y. H. Lin, and M. Li, Appl. Phys. Lett. 85, 3549 (2004).10.1063/1.1808874Suche in Google Scholar
[31] C. Kittel, Introduction to Solid State Physics, 6th ed., Wiley, New York 1986.Suche in Google Scholar
[32] O. Hjortstam, P. Isberg, S. Söderholm, and H. Dai, Appl. Phys. A 78, 1175 (2004).10.1007/s00339-003-2424-xSuche in Google Scholar
[33] C. L. Xu, B. Q. Wei, R. Z. Ma, J. Liang, X. K. Ma, et al., Carbon 37, 855 (1999).10.1016/S0008-6223(98)00285-1Suche in Google Scholar
[34] A. K. Srivastava, C. L. Xu, B. Q. Wei, R. Kishore, and K. N. Sood, Ind. J. Eng. Mater. Sci. 15, 247 (2008).Suche in Google Scholar
[35] H. Pal, V. Sharma, and M. Sharma, Phil. Mag. 94, 1478 (2014).10.1080/14786435.2014.892221Suche in Google Scholar
[36] M. Sharma, H. Pal, and V. Sharma, Int. J. Chemtech Res. 6, 2057 (2014).Suche in Google Scholar
[37] H. Pal and V. Sharma, Ind. J. Phys. 89, 217 (2015).10.1007/s12648-014-0539-xSuche in Google Scholar
[38] V. Genova, D. Gozzi, and A. Latini, J. Mater. Sci. 50, 7087 (2015).10.1007/s10853-015-9263-ySuche in Google Scholar
©2016 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrödinger Equation
- The Modified Simple Equation Method, the Exp-Function Method, and the Method of Soliton Ansatz for Solving the Long–Short Wave Resonance Equations
- Application of the Reverberation-Ray Matrix to the Non-Fourier Heat Conduction in Functionally Graded Materials
- Rational Solutions for Lattice Potential KdV Equation and Two Semi-discrete Lattice Potential KdV Equations
- Structural, Electronic, Magnetic and Optical Properties of Ni,Ti/Al-based Heusler Alloys: A First-Principles Approach
- Ab Initio Calculations on the Structural, Mechanical, Electronic, Dynamic, and Optical Properties of Semiconductor Half-Heusler Compound ZrPdSn
- Qualitative Behaviour of Generalised Beddington Model
- Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models
- Total π-Electron Energy of Conjugated Molecules with Non-bonding Molecular Orbitals
- Investigation of Thermal Expansion and Physical Properties of Carbon Nanotube Reinforced Nanocrystalline Aluminum Nanocomposite
- Bistable Bright Optical Spatial Solitons due to Charge Drift and Diffusion of Various Orders in Photovoltaic Photorefractive Media Under Closed-Circuit Conditions
- Application of a Differential Transform Method to the Transient Natural Convection Problem in a Vertical Tube with Variable Fluid Properties
Artikel in diesem Heft
- Frontmatter
- Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrödinger Equation
- The Modified Simple Equation Method, the Exp-Function Method, and the Method of Soliton Ansatz for Solving the Long–Short Wave Resonance Equations
- Application of the Reverberation-Ray Matrix to the Non-Fourier Heat Conduction in Functionally Graded Materials
- Rational Solutions for Lattice Potential KdV Equation and Two Semi-discrete Lattice Potential KdV Equations
- Structural, Electronic, Magnetic and Optical Properties of Ni,Ti/Al-based Heusler Alloys: A First-Principles Approach
- Ab Initio Calculations on the Structural, Mechanical, Electronic, Dynamic, and Optical Properties of Semiconductor Half-Heusler Compound ZrPdSn
- Qualitative Behaviour of Generalised Beddington Model
- Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models
- Total π-Electron Energy of Conjugated Molecules with Non-bonding Molecular Orbitals
- Investigation of Thermal Expansion and Physical Properties of Carbon Nanotube Reinforced Nanocrystalline Aluminum Nanocomposite
- Bistable Bright Optical Spatial Solitons due to Charge Drift and Diffusion of Various Orders in Photovoltaic Photorefractive Media Under Closed-Circuit Conditions
- Application of a Differential Transform Method to the Transient Natural Convection Problem in a Vertical Tube with Variable Fluid Properties