Startseite Naturwissenschaften Effect of solution acidity on the crystallization of polychromates in uranyl-bearing systems: synthesis and crystal structures of Rb2[(UO2)(Cr2O7)(NO3)2] and two new polymorphs of Rb2Cr3O10
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of solution acidity on the crystallization of polychromates in uranyl-bearing systems: synthesis and crystal structures of Rb2[(UO2)(Cr2O7)(NO3)2] and two new polymorphs of Rb2Cr3O10

  • Evgeny V. Nazarchuk , Oleg I. Siidra EMAIL logo , Dmitry O. Charkin , Stepan N. Kalmykov und Elena L. Kotova
Veröffentlicht/Copyright: 26. Januar 2021

Abstract

Three new rubidium polychromates, Rb2[(UO2)(Cr2O7)(NO3)2] (1), γ-Rb2Cr3O10 (2) and δ-Rb2Cr3O10 (3) were prepared by combination of hydrothermal treatment at 220 °C and evaporation of aqueous solutions under ambient conditions. Compound 1 is monoclinic, P21/c, a = 13.6542(19), b = 19.698(3), c = 11.6984(17) Å, β = 114.326(2)°, V = 2867.0(7) Å3, R1 = 0.040; 2 is hexagonal, P63/m, a = 11.991(2), c = 12.828(3) Å, γ = 120°, V = 1597.3(5) Å3, R1 = 0.031; 3 is monoclinic, P21/n, a = 7.446(3), b = 18.194(6), c = 7.848(3) Å, β = 99.953(9)°, V = 1047.3(7) Å3, R1 = 0.037. In the crystal structure of 1, UO8 bipyramids and NO3 groups share edges to form [(UO2)(NO3)2] species which share common corners with dichromate Cr2O7 groups producing novel type of uranyl dichromate chains [(UO2)(Cr2O7)(NO3)2]2−. In the structures of new Rb2Cr3O10 polymorphs, CrO4 tetrahedra share vertices to form Cr3O102− species. The trichromate groups are aligned along the 63 screw axis forming channels running in the ab plane in the structure of 2. The Rb cations reside between the channels and in their centers completing the structure. The trichromate anions are linked by the Rb+ cations into a 3D framework in the structure of 3. Effect of solution acidity on the crystallization of polychromates in uranyl-bearing systems is discussed.


Corresponding author: Oleg I. Siidra, Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034St. Petersburg, Russia; and Kola Science Center, Russian Academy of Sciences, Apatity, 184200Murmansk Region, Russia, E-mail:

Award Identifier / Grant number: 16-17-10085

Acknowledgments

Technical support by the SPbSU X-ray Diffraction and Microscopy and Microanalysis Resource Centers is gratefully acknowledged.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by the Russian Science Foundation through the grant 16-17-10085.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Hazen, R. M., Ewing, R. C., Sverjensky, D. A. Evolution of uranium and thorium minerals. Am. Mineral. 2009, 94, 1293–1311; https://doi.org/10.2138/am.2009.3208.Suche in Google Scholar

2. Halasyamani, P. S., Francis, R. J., Bee, J. S., O’Hare, D. Variable dimensionality in the uranium fluoride/2-methyl-piperazine system: syntheses and structures of UFO-5, 6, and 7; zero, one, and two dimensional materials with unprecedented topologies. Mater Res. Soc. Symp. 1999, 547, 383–388.10.1557/PROC-547-383Suche in Google Scholar

3. Romanchuk, A. Y., Vlasova, I. E., Kalmykov, S. N. Speciation of uranium and plutonium from nuclear legacy sites to the environment: a mini review. Front. Chem. 2020, 8, 1–10; https://doi.org/10.3389/fchem.2020.00630.Suche in Google Scholar PubMed PubMed Central

4. Romanchuk, A. Y., Kalmykov, S. N. Function of Colloidal and Nanoparticles in the Sorption of Radionuclides (Book Chapter). Behavior of Radionuclides in the Environment I: Function of Particles in Aquatic System; Springer: Singapore, 2020; pp. 151–176.10.1007/978-981-15-0679-6_6Suche in Google Scholar

5. Lebedev, V. A., Piscounov, V. M. Analysis of the vat residue of radioactive waste and the development of matrix mixtures for immobilization of the compound on the basis of mineral binders nanomodified. J. Min. Inst. 2013, 1, 55–58.Suche in Google Scholar

6. Siidra, O. I., Nazarchuk, E. V., Charkin, D. O., Ikhalaynen, Y. A., Sharikov, M. I. Open-framework sodium uranyl selenate and sodium uranyl sulfate with protonated morpholino-N-acetic acid. Z. Kristallogr. - Cryst. Mater. 2019, 234, 109–118; https://doi.org/10.1515/zkri-2018-2103.Suche in Google Scholar

7. Siidra, O. I., Nazarchuk, E. V., Charkin, D. O., Bocharov, S. N., Sharikov, M. I. Uranyl sulfate nanotubules templated by N-phenylglycine. Nanomaterials 2018, 8, 216–220; https://doi.org/10.3390/nano8040216.Suche in Google Scholar PubMed PubMed Central

8. Krivovichev, S. V., Burns, P. C., Tananaev, I. G., Eds. Structural Chemistry of Inorganic Actinide Compounds; Elsevier: Amsterdam, 2007; p. 494.Suche in Google Scholar

9. Doran, M. B., Norquist, A. J., O’Hare, D. Exploration of composition space in templated uranium sulfates. Inorg. Chem. 2003, 42, 6989–6995; https://doi.org/10.1021/ic034540j.Suche in Google Scholar PubMed

10. Nazarchuk, E. V., Ikhalaynen, Y. A., Charkin, D. O., Siidra, O. I., Kalmykov, S. N., Borisov, A. S. Effect of solution acidity on the structure of amino acid-bearing uranyl compounds. Radiochim. Acta 2019, 107, 311–325; https://doi.org/10.1515/ract-2018-3050.Suche in Google Scholar

11. Nazarchuk, E. V., Siidra, O. I., Charkin, D. O. Specific features of the crystal chemistry of layered uranyl compounds with the ratio UO2: TO4 = 5:8 (T = S6+, Cr6+, Se6+, Mo6+). Radiochemistry 2018, 60, 352–361; https://doi.org/10.1134/s1066362218040033.Suche in Google Scholar

12. Krivovichev, S. V. Structural crystallography of inorganic oxysalts. Crystallogr. Rev. 2009, 15, 279–281.10.1093/acprof:oso/9780199213207.001.1Suche in Google Scholar

13. Nazarchuk, E. V., Charkin, D. O., Siidra, O. I., Kalmykov, S. N. Organically templated layered uranyl molybdate [C3H9NH+]4[(UO2)3(MoO4)5] structurally based on mineral-related modular units. Minerals 2020, 10, 659–665; https://doi.org/10.3390/min10080659.Suche in Google Scholar

14. Nazarchuk, E. V., Siidra, O. I., Krivovichev, S. V. Synthesis and crystal structure of Ag2[(UO2)6(MoO4)7(H2O)2](H2O)2. Radiochemistry 2016, 58, 1–50; https://doi.org/10.1134/s106636221601001x.Suche in Google Scholar

15. Nazarchuk, E. V., Siidra, O. I., Krivovichev, S. V., Malcherek, T., Depmeier, W. First mixed alkaline uranyl molybdates: synthesis and crystal structures of CsNa3[(UO2)4O4(Mo2O8)] and Cs2Na8[(UO2)8O8(Mo5O20)]. Z. Anorg. Allg. Chem. 2009, 635, 1231–1235; https://doi.org/10.1002/zaac.200801162.Suche in Google Scholar

16. Nazarchuk, E. V., Krivovichev, S. V., Burns, P. C. Crystal structure of Tl2[(UO2)2(MoO4)3] and crystal chemistry of the compounds M2[(UO2)2(MoO4)3] (M = Tl, Rb, Cs). Radiochemistry 2005, 47, 447–451; https://doi.org/10.1007/s11137-005-0115-5.Suche in Google Scholar

17. Krivovichev, S. V., Burns, P. C., Armbruster, T., Nazarchuk, E. V., Depmeier, W. Chiral open-framework uranyl molybdates. 2. Flexibility of the U:Mo = 6:7 frameworks: syntheses and crystal structures of (UO2)0.82[C8H20N]0.36[(UO2)6(MoO4)7(H2O)2](H2O)n and [C6H14N2][(UO2)6(MoO4)7(H2O)2](H2O)m. Microporous Mesoporous Mater. 2005, 78, 217–224; https://doi.org/10.1016/j.micromeso.2004.10.019.Suche in Google Scholar

18. Krivovichev, S. V., Armbruster, T., Chernyshov, D. Y., Nazarchuk, E. V., Depmeier, W. Chiral open-framework uranyl molybdates. 3. Synthesis, structure and the C2221→P212121 low-temperature phase transition of [C6H16N]2[(UO2)6(MoO4)7(H2O)2](H2O)2. Microporous Mesoporous Mater. 2005, 78, 225–234; https://doi.org/10.1016/j.micromeso.2004.10.020.Suche in Google Scholar

19. Krivovichev, S. V., Cahill, C. L., Nazarchuk, E. V., Armbruster, T., Depmeier, W. Chiral open-framework uranyl molybdates. 1. Topological diversity: synthesis and crystal structure of [(C2H5)2NH2]2[(UO2)4(MoO4)5(H2O)](H2O). Microporous Mesoporous Mater. 2005, 78, 209–215; https://doi.org/10.1016/j.micromeso.2004.10.018.Suche in Google Scholar

20. Nazarchuk, E. V., Krivovichev, S. V., Filatov, S. K. Phase transitions and high-temperature crystal chemistry of polymorphous modifications of Cs2(UO2)2(MoO4). Radiochemistry 2004, 46, 438–440; https://doi.org/10.1007/s11137-005-0005-x.Suche in Google Scholar

21. Obbade, S., Dion, C., Bekaert, E., Yagoubi, S., Saadi, M., Abraham, F. Synthesis and crystal structure of new uranyl tungstates M2(UO2)(W2O8) (M = Na, K), M2(UO2)2(WO5)O (M = K, Rb) and Na10(UO2)8(W5O20)O8. J. Solid State Chem. 2003, 172, 305–318; https://doi.org/10.1016/s0022-4596(03)00103-8.Suche in Google Scholar

22. Alekseev, E. V., Krivovichev, S. V., Depmeier, W., Armbruster, T., Katzke, H., Suleimanov, E. V., Chuprunov, E. V. One-dimensional chains in uranyl tungstates: syntheses and structures of A8[(UO2)4(WO4)4(WO5)2] (A = Rb,Cs) and Rb6[(UO2)2O(WO4)4]. J. Solid State Chem. 2006, 179, 2977–2987; https://doi.org/10.1016/j.jssc.2006.05.015.Suche in Google Scholar

23. Alekseev, E. V., Krivovichev, S. V., Depmeier, W., Malcherek, T., Suleimanov, E. V., Chuprunov, E. V. The crystal structure of Li4[(UO2)2(W2O10)] and crystal chemistry of Li uranyl tungstates. Z. Kristallogr. - Cryst. Mater. 2007, 222, 391–395; https://doi.org/10.1524/zkri.2007.222.8.391.Suche in Google Scholar

24. Siidra, O. I., Nazarchuk, E. V., Petrunin, A. A., Kayukov, R. A., Krivovichev, S. V. Nanoscale hemispheres in novel mixed-valent uranyl chromate(V,VI), (C3NH10)10[(UO2)13(Cr12O42)(CrO4)6(H2O)6](H2O)6. Inorg. Chem. 2012, 51, 9162–9164; https://doi.org/10.1021/ic301288r.Suche in Google Scholar PubMed

25. Siidra, O., Nazarchuk, E., Bocharov, S., Depmeier, W., Zadoya, A. Formation of co-racemic uranyl chromate constructed from chiral layers of different topology. Acta Crystallogr. 2017, B73, 101–111; https://doi.org/10.1107/s205252061601917x.Suche in Google Scholar

26. Nazarchuk, E. V., Siidra, O. I., Kayukov, R. A. Synthesis and crystal-chemical features of two new uranyl chromates with the structures derived from [(UO2)(TO4)(H2O)n]0 (T = Cr6+, S6+, Se6+, n = 0–2). Radiochemistry 2016, 58, 571–577; https://doi.org/10.1134/s1066362216060023.Suche in Google Scholar

27. Nazarchuk, E. V., Siidra, O. I., Zadoya, A. I., Agakhanov, A. A. Host-guest structural architectures in hydrous alkaline (Li, K) uranyl chromates and dichromates. Inorg. Chem. Commun. 2015, 62, 15–18; https://doi.org/10.1016/j.inoche.2015.10.025.Suche in Google Scholar

28. Siidra, O. I., Nazarchuk, E. V., Krivovichev, S. V. Mixed-ligand coordination of the (UO2)2+ cation and apophyllite topology of uranyl chlorochromate layer in the structure of ((CH3)2CHNH3)[(UO2)(CrO4)Cl(H2O)]. Z. Kristallogr. - Cryst. Mater. 2012, 227, 530–534; https://doi.org/10.1524/zkri.2012.1471.Suche in Google Scholar

29. Siidra, O. I., Nazarchuk, E. V., Krivovichev, S. V. Isopropylammonium layered uranyl chromates: syntheses and crystal structures of [(CH3)2CHNH3]3[(UO2)3(CrO4)2O(OH)3] and [(CH3)2CHNH3]2[(UO2)2(CrO4)3(H2O)]. Z. Anorg. Allg. Chem. 2012, 638, 976–981; https://doi.org/10.1002/zaac.201100558.Suche in Google Scholar

30. Siidra, O. I., Nazarchuk, E. V., Krivovichev, S. V. Highly kinked uranyl chromate nitrate layers in the crystal structures of A[(UO2)(CrO4)(NO3)] (A = K, Rb). Z. Anorg. Allg. Chem. 2012, 638, 982–986; https://doi.org/10.1002/zaac.201200009.Suche in Google Scholar

31. Siidra, O. I., Nazarchuk, E. V., Krivovichev, S. V. Syntheses and crystal structures of two novel alkaline uranyl chromates A2(UO2)(CrO4)2 (A = Rb, Cs) with bidentate coordination mode of uranyl ions by chromate anions. J. Solid State Chem. 2012, 187, 286–29; https://doi.org/10.1016/j.jssc.2012.01.037.Suche in Google Scholar

32. Siidra, O. I., Nazarchuk, E. V., Krivovichev, S. V. Unprecedented bidentate coordination of the uranyl cation by the chromate anion in the structure of [(CH3)2CHNH3]2[UO2(CrO4)2]. Eur. J. Inorg. Chem. 2012, 2, 194–197; https://doi.org/10.1002/ejic.201101192.Suche in Google Scholar

33. Herbst, R. S., Law, J. D., Todd, T. A., Romanovskiy, V. N., Smirnov, I. V., Babain, V. A., Esimantovskiy, V. N., Zaitsev, B. N. Development of the universal extraction (unex) process for the simultaneous recovery of Cs, Sr, and actinides from acidic radioactive wastes. Separ. Sci. Technol. 2003, 38, 2685; https://doi.org/10.1081/ss-120022567.Suche in Google Scholar

34. Delmore, J. E., Snyder, D. C., Tranter, T., Mann, N. Cesium isotope ratios as indicators of nuclear power plant operations. J. Environ. Radioact. 2011, 102, 1008–11; https://doi.org/10.1016/j.jenvrad.2011.06.013.Suche in Google Scholar PubMed

35. Degueldre, C. A., Dawson, R. J., Najdanovic-Visak, V. Nuclear fuel cycle, with a liquid ore and fuel: toward renewable energy. Sustain. Energy Fuels 2019, 3, 1693–1700; https://doi.org/10.1039/c8se00610e.Suche in Google Scholar

36. Gabaraev, B. A., Smirnov, Yu., Cherepnin, Yu. S. Nuclear Power Engineering of the XXI Century; MEI Publishing House: Moscow, 2013.Suche in Google Scholar

37. Babichev, B. A., Esimantovskiy, V. M., Kavetsky, A. G., Fireplaces, V. M. Characteristics of the fraction containing curium and rare earth elements obtained during processing of VVER-1000 SNF. Proc. Khlopin Inst. 2003, 10, 106–117.Suche in Google Scholar

38. Kovba, L. M., Ippolitova, E. A., Simanov, Y. P., Spitsyn, V. I. The crystal structure of uranates. 1. Uranates with tetragonal layers (UO2)O2. Dokl. RAN 1958, 120, 1042–1044.Suche in Google Scholar

39. Zachariasen, W. H. Crystal chemical studies of the 5f-Series of elements. XX. The crystal structure of tri-potassium uranyl fluoride. Acta Crystallogr. 1954, 7, 783–787; https://doi.org/10.1107/s0365110x54002447.Suche in Google Scholar

40. Sundberg, I., Sillén, L. G. On the crystal structure of KUO2VO4 (Synthetic anhydrous carnotite). Ark. Kem. Mineral. Geol. 1949, 1, 337–351.Suche in Google Scholar

41. Serezhkina, L. B., Trunov, V. K., Kholodkovskaya, L. N., Kuchumova, N. V. Crystal structure of KUO2CrO4(OH) 1.5(H2O). Coord. Chem. 1990, 16, 1288–1291.Suche in Google Scholar

42. Sykora, R. E., McDaniel, S. M., Wells, D. M., Albrecht Schmitt, T. E. Mixed-metal uranium(VI) iodates: hydrothermal syntheses, structures and reactivity of Rb(UO2(CrO4)(IO3)(H2O)), A2(UO2(CrO4)(IO3)2) (A = K, Rb, Cs) and K2(UO2(MoO4)(IO3)2). Inorg. Chem. 2002, 41, 5126–5132; https://doi.org/10.1021/ic025773y.Suche in Google Scholar PubMed

43. Verevkin, A. G., Vologzhanina, A. V., Serezhkina, L. B., Serezhkin, V. N. X-ray diffraction study of Rb2[(UO2)2(CrO4)3(H2O)2] 4H2O. Kristallografiya 2010, 55, 645–650; https://doi.org/10.1134/s1063774510040115.Suche in Google Scholar

44. Siidra, O. I., Nazarchuk, E. V., Suknotova, A. N., Kayukov, R. A., Krivovichev, S. V. Cr(VI) trioxide as a starting material for the synthesis of novel zero-, one-, and two-dimensional uranyl dichromates and chromate-dichromates. Inorg. Chem. 2013, 52, 4729–4735; https://doi.org/10.1021/ic400341q.Suche in Google Scholar PubMed

45. Siidra, O. I., Nazarchuk, E. V., Bocharov, S. N., Depmeier, W., Kayukov, R. A. Microporous uranyl chromates successively formed by evaporation from acidic solution. Z. Kristallogr. - Cryst. Mater. 2018, 233, 1–8; https://doi.org/10.1515/zkri-2017-2059.Suche in Google Scholar

46. Murphy, G. L., Langer, E. M., Walter, O. B., Wang, Y. C., Wang, S. C., Alekseev, E. V. Insights into the structural chemistry of anhydrous and hydrous hexavalent uranium and neptunium dinitrato, trinitrato, and tetranitrato complexes. Inorg. Chem. 2020, 59, 7204–7215; https://doi.org/10.1021/acs.inorgchem.0c00657.Suche in Google Scholar PubMed

47. Doran, M. B., Norquist, A. J., Hare, D. O. catena-Poly[tetramethylammonium [[(nitrato-κ2-O,O)dioxouranium]-mue3-sulfato]]. Acta Crystallogr. 2003, E59, m373–m375; https://doi.org/10.1107/s1600536803010808.Suche in Google Scholar

48. Liu, D. S., Huang, G. S., Luo, Q. Y., Xu, Y. P., Li, X. F. Poly[tetramethylammonium [nitratouranyl-μ3-selenito]]. Acta Crystallogr. 2006, E62, m1584–m1585; https://doi.org/10.1107/s1600536806022045.Suche in Google Scholar

49. Siidra, O. I., Nazarchuk, E. V., Zadoya, A. I. Novel [(UO2)O6(NO3)n] (n = 1, 2) based units in organically templated uranyl compounds. Inorg. Chem. Commun. 2014, 50, 4–7; https://doi.org/10.1016/j.inoche.2014.10.009.Suche in Google Scholar

50. Nazarchuk, E. V., Charkin, D. O., Siidra, O. I., Gurzhiy, V. V. Crystal-chemical features of U(VI) compounds with inorganic complexes derived from [(UO2)(TO4)(H2O)n], T = S, Cr, Se: synthesis and crystal structures of two new uranyl sulfates. Radiochemistry 2018, 60, 345–351; https://doi.org/10.1134/s1066362218040021.Suche in Google Scholar

51. Krivovichev, S. V., Burns, P. C. Structural topology of potassium uranyl chromates: crystal structures of K8[(UO2)(CrO4)4](NO3)2, K5[(UO2)(CrO4)3](NO3)(H2O)3, K4[(UO2)3(CrO4)5](H2O)8 and K2[(UO2)2(CrO4)3(H2O)2](H2O)4. Z. Kristallogr. 2003, 218, 725–732; https://doi.org/10.1524/zkri.218.11.725.20298.Suche in Google Scholar

52. Siidra, O. I., Nazarchuk, E. V., Charkin, D. O., Kalmykov, S. N., Zadoya, A. I. Complex uranyl dichromates templated by aza-crowns. Crystals 2018, 8, 462–474; https://doi.org/10.3390/cryst8120462.Suche in Google Scholar

53. Casari, B. M., Oberg, E., Langer, V. The orthorhombic polymorph of diammonium trichromate(VI) decaoxide, α–(NH4)2Cr3O10. J. Chem. Crystallogr. 2007, 37, 135–140; https://doi.org/10.1007/s10870-006-9165-6.Suche in Google Scholar

54. Gili, P., Lorenzo-Louis, P. A. Compounds of chromium(VI) as ligands. Coord. Chem. Rev. 1999, 193-195, 747–768; https://doi.org/10.1016/s0010-8545(98)00256-2.Suche in Google Scholar

55. Nazarchuk, E. V., Charkin, D. O., Kozlov, D. V., Siidra, O. I., Kalmykov, S. N. Topological analysis of the layered uranyl compounds bearing slabs with UO2:TO4 ratio of 2:3. Radiochim. Acta 2019, 108, 249–260.10.1515/ract-2019-3183Suche in Google Scholar

56. Siidra, O. I., Nazarchuk, E. V., Sysoeva, E. V., Kayukov, R. A., Depmeier, W. Isolated uranyl chromate and polychromate units in crown ether templated compounds. Eur. J. Inorg. Chem. 2014, 2014, 5495–5498; https://doi.org/10.1002/ejic.201402806.Suche in Google Scholar

57. Kolitsch, U. Alpha-(Cs2Cr3O10). Acta Crystallogr. 2003, E59, i164–i166; https://doi.org/10.1107/s1600536803026473.Suche in Google Scholar

58. Loefgren, P. The crystal structure of Rb2Cr3O10. Chem. Scripta 1974, 5, 91–96.Suche in Google Scholar

59. Mattes, R., Meschede, W. Zur struktur des Cr3O10(2−) – ions in beta-Cs2Cr3O10. Z. Anorg. Allg. Chem. 1973, 395, 216–222; https://doi.org/10.1002/zaac.19733950210.Suche in Google Scholar

60. Blum, D., Guitel, J. C. Structure de la forme hexagonale du trichromate d’ammonium: (NH4)2. Acta Crystallogr. 1980, B36, 135–137; https://doi.org/10.1107/s0567740880002610.Suche in Google Scholar

61. Blum, D., Averbuch-Pouchot, M. T., Guitel, J. C. Structure du tripolychromate de potassium K2Cr3O10. Acta Crystallogr. 1979, B35, 454–456; https://doi.org/10.1107/s0567740879003769.Suche in Google Scholar

62. Sheldrick, G. M. Short history of SHELX. Acta Crystallogr. 2008, А64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed

63. Pressprich, M. R., Willet, R. D., Poshusta, R. D., Saunders, S. C., Davis, H. B., Gard, G. L. Preparation and crystal structure of dipyrazinium trichromate and bond length correlation for chromate anions of the form CrnO2−3n+1. Inorg. Chem. 1988, 27, 260; https://doi.org/10.1021/ic00275a009.Suche in Google Scholar

64. Betke, U., Wickleder, M. Oleum and sulfuric acid as reaction media: the actinide examples UO2(S2O7) – lt (low temperature), UO2(S2O7) – ht (high temperature), UO2(HSO4)2, An(SO4)2 (An = Th, U), Th4(HSO4)2(SO4)7 and Th(HSO4)2(SO4). Eur. J. Inorg. Chem. 2012, 2, 306–317; https://doi.org/10.1002/ejic.201100975.Suche in Google Scholar

65. Yu, N., Kegler, P., Klepov, V. V., Dellen, J. Influence of extreme conditions on the formation and structures of caesium uranium(VI) arsenates. Dalton Trans. 2015, 44, 20735–20744; https://doi.org/10.1039/c5dt03842a.Suche in Google Scholar PubMed

66. Alekseev, E. S., Krivovichev, S. V., Depmeier, W. K2[(UO2)As2O7] – the first uranium polyarsenate. Z. Anorg. Allg. Chem. 2007, 633, 1125–1126; https://doi.org/10.1002/zaac.200700020.Suche in Google Scholar

67. Linde, S. A., Gorbunova, Yu. E., Lavrov, A. V., Pobedina, A. B. Synthesis and structure of crystals of uranyl pyrophosphates M2UO2P2O7 (M = rubidium, cesium). Neorg. Mater. 1981, 17, 1062–1066.Suche in Google Scholar

68. Stephens, J. S., Cruickshank, D. W. J. The crystal structure of (CrO3) infinite. Acta Crystallogr. 1970, B26, 222–226; https://doi.org/10.1107/s0567740870002182.Suche in Google Scholar

69. Garrison, J. C., Simons, R. S., Talley, J. M., Wesdemiotis, C., Tessier, C. A., Youngs, W. J. Synthesis and structural characterization of an imidazolium-linked cyclophane and the silver complex of an N-heterocyclic carbene-linked cyclophane. Organometallics 2001, 20, 1276; https://doi.org/10.1021/om010085s.Suche in Google Scholar

70. Cui, W., Li, P., Zheng, S., Zhang, H., Liu, C., Chen, Y., Zhang, Y. Phase equilibria for the KHSO4–H2SO4–H2O and KHSO4–CrO3–H2SO4–H2O systems at 313.15 K. J. Chem. Eng. Data 2016, 61, 354–358; https://doi.org/10.1021/acs.jced.5b00594.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2020-0078).


Received: 2020-09-03
Accepted: 2021-01-15
Published Online: 2021-01-26
Published in Print: 2021-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2020-0078/html
Button zum nach oben scrollen