Home Phase stability analysis of shocked ammonium dihydrogen phosphate by X-ray and Raman scattering studies
Article
Licensed
Unlicensed Requires Authentication

Phase stability analysis of shocked ammonium dihydrogen phosphate by X-ray and Raman scattering studies

  • Sivakumar Aswathappa , Arumugam Saranraj , Sahaya Jude Dhas Sathiyadhas , Kondaviti Showrilu and Martin Britto Dhas Sathiyadhas Amalapushpam
Published/Copyright: December 18, 2020

Abstract

Impact of shock waves on non-linear optical materials bring about a lot of unknown behaviors of materials and such kinds of shock wave recovery experiments are highly required for the better understanding of material-property relationship. In the present context, we have performed experiments on the impact of structural properties of ammonium dihydrogen phosphate (ADP) samples under shock wave loaded conditions and the results of the test samples have been evaluated by X-ray diffraction (XRD), Raman spectroscopy, diffused reflectance spectroscopy (DRS) and field emission scanning electron microscopic (FESEM) technique. Interestingly, prismatic face of ADP shows loss of degree of crystallinity whereas pyramidal face shows enhancement of crystalline nature with respect to number of shock pulses due to shock wave induced dynamic re-crystallization. Hence, the present problem is worthy enough to unearth and understand the anisotropic nature of the ADP crystal and their structural modifications at shock wave loaded conditions.


Corresponding author: Martin Britto Dhas Sathiyadhas Amalapushpam, Department of Physics, Abdul Kalam Research Center, Sacred Heart College, Tirupattur, Vellore, Tamil Nadu, 635 601, India, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Kanel, G. I., Fortov, V. E., Razorenov, S. V. Shock waves in condensed-state physics. Physics-Uspekhi 2007, 50, 771–791.10.1070/PU2007v050n08ABEH006327Search in Google Scholar

2. Ge, N.-N., Bai, S., Changc, J., Ji, G.-F. Shock response of condensed-phase RDX:molecular dynamics simulations in conjunction with the MSST method. RSC Adv. 2018, 8, 1731; https://doi.org/10.1039/c8ra00409a.Search in Google Scholar PubMed PubMed Central

3. Sivakumar, A., Saranraj, A., Sahaya Jude Dhas, S., Jose, M., Martin Britto Dhas, S. A. Shock wave-induced defect engineering for investigation on optical properties of triglycine sulfate crystal. Opt. Eng. 2019, 58, 077104.10.1117/1.OE.58.7.077104Search in Google Scholar

4. Bhardwaj, P., Singh, S. Pressure induced structural phase transitions – a review. Cent. Eur. J. Chem. 2012, 10, 1391–1422; https://doi.org/10.2478/s11532-012-0090-6.Search in Google Scholar

5. McMillan, P. F. New materials from high-pressure experiments. Nat. Mater. 2002, 1, 19–25; https://doi.org/10.1038/nmat716.Search in Google Scholar PubMed

6. Rita, A., Sivakumar, A., Jose, M., Martin Britto Dhas, S. A. Shock wave recovery studies on structural and magnetic properties of α—Fe2O3 NPs. Mater. Res. Express 2019, 6, 095035; https://doi.org/10.1088/2053-1591/ab2eba.Search in Google Scholar

7. Luo, S.-N., Germann, T. C., Tonks, D. L., An, Q. Shock wave loading and spallation of copper bicrystals with asymmetric ∑3 (101) tilt grain boundaries. J. Appl. Phys. 2010, 108, 093526; https://doi.org/10.1063/1.3506707.Search in Google Scholar

8. Xiong, Y., Li, X., Xiao, S., Deng, H., Huang, B., Zhu, W., Hu, W. Effect of particle packing and density on shock response in ordered arrays of Ni + Al nanoparticles. Phys. Chem. Chem. Phys. 2019, 21, 7272–7280; https://doi.org/10.1039/c8cp06497k.Search in Google Scholar PubMed

9. Gao, Z., Xiong, Z., Li, J., Lu, C., Zhang, G., Zeng, T., Ma, Y., Ma, G., Zhang, R., Chen, K., Zhang, T., Liu, Y., Yang, J., Cao, L., Jin, K. Enhanced thermoelectric performance of higher manganese silicides by shock-induced high-density dislocations. J. Mater. Chem. A 2019, 7, 3384–3390; https://doi.org/10.1039/c8ta11292d.Search in Google Scholar

10. Zhu, W., Song, Z., Deng, X., He, H., Cheng, X. Lattice orientation effect on the nanovoid growth in copper under shock loading. Phys. Rev. B 2007, 75, 024104; https://doi.org/10.1103/physrevb.75.024104.Search in Google Scholar

11. Bhagavannarayana, G., Parthiban, S., Meenakshisundaram, S. An interesting correlation between crystalline perfection and second harmonic generation efficiency on KCl- and oxalic acid-doped ADP crystals. Cryst. Growth Des. 2008, 8, 446–451; https://doi.org/10.1021/cg0702129.Search in Google Scholar

12. Lian, Y., Xu, M., Zhang, L., Cai, D., Sui, T., Sun, X., Chai, X. Rapid growth of ADP crystal in a defined crystallographic direction. CrystEngComm 2018, 20, 917; https://doi.org/10.1039/c7ce02076g.Search in Google Scholar

13. Ren, Y., Zhao, X., Hagley, E. W., Deng, L. Ambient-condition growth of high-pressure phase centrosymmetric crystalline KDP microstructures for optical second harmonic generation. Sci. Adv. 2016, 2, 1600404; https://doi.org/10.1126/sciadv.1600404.Search in Google Scholar PubMed PubMed Central

14. Mdo, F. E. A., Serra, K. C., Souzaf, R. C., Moreiraf, S. G. C., Mendes Filho, J., Moreira, J. E. New phase transition in KDP. Braz. J. Phys. 1992, 22, 95–99.Search in Google Scholar

15. Subramony, A., Marquardt, B. J., Macklin, J. W., Kahr, B. Reevaluation of Raman spectra for KH2PO4 high-temperature phases. Chem. Mater. 1999, 11, 1312–1316; https://doi.org/10.1021/cm9810988.Search in Google Scholar

16. Juradoa, J. F., Vargas-Hernandez, C., Vargas, R. A. Raman and structural studies on the high-temperature regime of the KH2PO4-NH4H2PO4 system. Rev. Mexic. Fisica 2012, 58, 411–416.Search in Google Scholar

17. Sivakumar, A., Suresh, S., Balachandar, S., Thirupathy, J., Kalyana Sundar, J., Martin Britto Dhas, S. A. Effect of shock waves on thermophysical properties of ADP and KDP crystals. Opt. Laser. Technol. 2019, 111, 284–289; https://doi.org/10.1016/j.optlastec.2018.10.001.Search in Google Scholar

18. Sivakumar, A., Sahaya Jude Dhas, S., Balachandar, S., Martin Britto Dhas, S. A. Effect of shock waves on structural and dielectric properties of ammonium dihydrogen phosphate crystal. Z. Kristallogr. 2019, 234, 557–567.10.1515/zkri-2018-2159Search in Google Scholar

19. Asakuma, Y., Li, Q., Ming Ang, H., Tade, M., Maeda, K., Fukui, K. A study of growth mechanism of KDP and ADP crystals by means of quantum chemistry. Appl. Surf. Sci. 2008, 254, 4524–4530; https://doi.org/10.1016/j.apsusc.2008.01.058.Search in Google Scholar

20. Xua, D., Xuea, D., Ratajczak, H. Morphology and structure studies of KDP and ADP crystallites in the water and ethanol solutions. J. Mol. Struct. 2005, 740, 37–45; https://doi.org/10.1016/j.molstruc.2005.01.016.Search in Google Scholar

21. Boldyreva, E. V. High-pressure studies of the hydrogen bond networks in molecular crystals. J. Mol. Struct. 2004, 700, 151–155; https://doi.org/10.1016/j.molstruc.2004.03.026.Search in Google Scholar

22. Zhou, H., Wang, F., Xu, M., Liu, B., Liu, F., Zhang, L., Xu, X., Sun, X., Wang, Z. Raman spectral characterization of NH4H2PO4 single crystals: effect of pH on microstructure. J. Cryst. Growth 2016, 450, 6–13; https://doi.org/10.1016/j.jcrysgro.2016.06.018.Search in Google Scholar

23. Gorelik, V. S., Kaminskii, A. A., Melnik, N. N., Sverbil, P. P., Voinov, Y. P., Zavaritskaya, T. N., Zlobina, L. I. Spontaneous Raman scattering spectra of ADP and DADP crystals in different polarization schemes. Russian Laser Res. 2008, 29, 357–362; https://doi.org/10.1007/s10946-008-9025-2.Search in Google Scholar

24. Zhukov, A. N., Sidorovb, N. S., Palnichenkob, A. V., Avdonina, V. V., Shakhraia, D. V. Influence of shock-wave pressure up to 65 GPa on the crystal structure and super-conducting properties of MgB2. High Press. Res. 2009, 29, 414–421; https://doi.org/10.1080/08957950903119370.Search in Google Scholar

25. Boldyreva, E. V., Sowa, H., Seryotkin, Y. V., Drebushchak, T. N., Ahsbahs, H., Chernyshev, V., Dmitriev, V. Pressure-induced phase transitions in crystalline L-serine studied by single-crystal and high-resolution powder X-ray diffraction. Chem. Phys. Lett. 2006, 429, 474–478; https://doi.org/10.1016/j.cplett.2006.08.092.Search in Google Scholar

26. Davey, R. J., Mullin, J. W. A mechanism of the habit modification of ammonium dihydrogen phosphate crystals in the presence of ionic species in aqueous solution. Krist. Tech. 1976, 11, 229–233; https://doi.org/10.1002/crat.19760110303.Search in Google Scholar

27. Aguilo, M., Woensdre, C. F. Crystal morphology of adp (NH4H2PO4): a qualitative approach. J. Cryst. Growth 1984, 69, 527–536; https://doi.org/10.1016/0022-0248(84)90364-6.Search in Google Scholar

28. Lian, Y., Zhu, L., Sui, T., Yu, G., Zhang, L., Zhou, H., Xu, M., Sun, X. The rapid growth of ADP single crystal. CrystEngComm 2016, 18, 7530–7536; https://doi.org/10.1039/c6ce01492e.Search in Google Scholar

29. Lian, Y., Yu, G., Liu, F., Zhang, L., Xu, M., Zhou, H., Sun, X., Gu, Q. Prismatic morphology of an ADP crystal grown in a defined crystallographic direction. RSC Adv. 2017, 7, 52962; https://doi.org/10.1039/c7ra08245b.Search in Google Scholar

30. Xu, D., Xue, D. Chemical bond analysis of the crystal growth of KDP and ADP. J. Cryst. Growth 2006, 286, 108–113; https://doi.org/10.1016/j.jcrysgro.2005.09.040.Search in Google Scholar

31. Arsic, J., Reedijk, M. F., Sweegers, A. J. R., Wang, Y. S., Vlieg, E. Compression versus expansion on ionic crystal surfaces. Phys. Rev. B 2001, 64, 233402; https://doi.org/10.1103/physrevb.64.233402.Search in Google Scholar

32. Paulus, W., Abdul Rahman, I., Jalar, A., Kamil Othman, N., Ismail, R., Yusmawati Wan Yusoff, W., Abu Bakar, M. The relationship between XRD peak intensity and mechanical properties of irradiated lead- free solder. Mater. Res. Forum 2017, 888, 423–427; https://doi.org/10.4028/www.scientific.net/msf.888.423.Search in Google Scholar

33. Senthil Pandian, M., Ramasamy, P. Conventional slow evaporation and Sankaranarayanan–Ramasamy (SR) method grown diglycine zinc chloride (DGZC) single crystal and its comparative study. J. Cryst. Growth 2010, 312, 413–419; https://doi.org/10.1016/j.jcrysgro.2009.11.011.Search in Google Scholar

34. Thayanithi, V., Rajesh, K., Praveen Kumar, P. Investigation of unidirectional growth and characterization of nonlinear optical L-alaninium p-toluenesulfonate crystal. Mater. Res. Express 2017, 4, 086201; https://doi.org/10.1088/2053-1591/aa8080.Search in Google Scholar

35. Sivakumar, A., Saranraj, A., Sahaya Jude Dhas, A., Jose, M., Kamala Bharathi, K., Martin Britto Dhas, S. A. Modification of optical properties of ammonium dihydrogen phosphate crystal by employing shock waves. Opt. Eng. 2019, 58, 107101.Search in Google Scholar

36. Sivakumar, A., Manivannan, M., Sahaya Jude Dhas, S., Kalyana Sundar, J., Jose, M., Martin Britto Dhas, S. A. Tailoring the dielectric properties of KDP crystals by shock waves for microelectronic and optoelectronic applications. Mater. Res. Express 2019, 6, 086303; https://doi.org/10.1088/2053-1591/ab1c96.Search in Google Scholar

37. Sivakumar, A., Saranraj, A., Sahaya Jude Dhas, A., Martin Britto Dhas, S. A. Shock wave induced enhancement of optical properties of benzil crystal. Mater. Res. Express 2019, 6, 046205; https://doi.org/10.1088/2053-1591/aafb47.Search in Google Scholar

Received: 2020-08-06
Accepted: 2020-11-20
Published Online: 2020-12-18
Published in Print: 2021-02-23

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2020-0072/html
Scroll to top button