Effect of solution acidity on the crystallization of polychromates in uranyl-bearing systems: synthesis and crystal structures of Rb2[(UO2)(Cr2O7)(NO3)2] and two new polymorphs of Rb2Cr3O10
Abstract
Three new rubidium polychromates, Rb2[(UO2)(Cr2O7)(NO3)2] (1), γ-Rb2Cr3O10 (2) and δ-Rb2Cr3O10 (3) were prepared by combination of hydrothermal treatment at 220 °C and evaporation of aqueous solutions under ambient conditions. Compound 1 is monoclinic,
Funding source: Russian Science Foundation
Award Identifier / Grant number: 16-17-10085
Acknowledgments
Technical support by the SPbSU X-ray Diffraction and Microscopy and Microanalysis Resource Centers is gratefully acknowledged.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This work was financially supported by the Russian Science Foundation through the grant 16-17-10085.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Hazen, R. M., Ewing, R. C., Sverjensky, D. A. Evolution of uranium and thorium minerals. Am. Mineral. 2009, 94, 1293–1311; https://doi.org/10.2138/am.2009.3208.Search in Google Scholar
2. Halasyamani, P. S., Francis, R. J., Bee, J. S., O’Hare, D. Variable dimensionality in the uranium fluoride/2-methyl-piperazine system: syntheses and structures of UFO-5, 6, and 7; zero, one, and two dimensional materials with unprecedented topologies. Mater Res. Soc. Symp. 1999, 547, 383–388.10.1557/PROC-547-383Search in Google Scholar
3. Romanchuk, A. Y., Vlasova, I. E., Kalmykov, S. N. Speciation of uranium and plutonium from nuclear legacy sites to the environment: a mini review. Front. Chem. 2020, 8, 1–10; https://doi.org/10.3389/fchem.2020.00630.Search in Google Scholar PubMed PubMed Central
4. Romanchuk, A. Y., Kalmykov, S. N. Function of Colloidal and Nanoparticles in the Sorption of Radionuclides (Book Chapter). Behavior of Radionuclides in the Environment I: Function of Particles in Aquatic System; Springer: Singapore, 2020; pp. 151–176.10.1007/978-981-15-0679-6_6Search in Google Scholar
5. Lebedev, V. A., Piscounov, V. M. Analysis of the vat residue of radioactive waste and the development of matrix mixtures for immobilization of the compound on the basis of mineral binders nanomodified. J. Min. Inst. 2013, 1, 55–58.Search in Google Scholar
6. Siidra, O. I., Nazarchuk, E. V., Charkin, D. O., Ikhalaynen, Y. A., Sharikov, M. I. Open-framework sodium uranyl selenate and sodium uranyl sulfate with protonated morpholino-N-acetic acid. Z. Kristallogr. - Cryst. Mater. 2019, 234, 109–118; https://doi.org/10.1515/zkri-2018-2103.Search in Google Scholar
7. Siidra, O. I., Nazarchuk, E. V., Charkin, D. O., Bocharov, S. N., Sharikov, M. I. Uranyl sulfate nanotubules templated by N-phenylglycine. Nanomaterials 2018, 8, 216–220; https://doi.org/10.3390/nano8040216.Search in Google Scholar PubMed PubMed Central
8. Krivovichev, S. V., Burns, P. C., Tananaev, I. G., Eds. Structural Chemistry of Inorganic Actinide Compounds; Elsevier: Amsterdam, 2007; p. 494.Search in Google Scholar
9. Doran, M. B., Norquist, A. J., O’Hare, D. Exploration of composition space in templated uranium sulfates. Inorg. Chem. 2003, 42, 6989–6995; https://doi.org/10.1021/ic034540j.Search in Google Scholar PubMed
10. Nazarchuk, E. V., Ikhalaynen, Y. A., Charkin, D. O., Siidra, O. I., Kalmykov, S. N., Borisov, A. S. Effect of solution acidity on the structure of amino acid-bearing uranyl compounds. Radiochim. Acta 2019, 107, 311–325; https://doi.org/10.1515/ract-2018-3050.Search in Google Scholar
11. Nazarchuk, E. V., Siidra, O. I., Charkin, D. O. Specific features of the crystal chemistry of layered uranyl compounds with the ratio UO2: TO4 = 5:8 (T = S6+, Cr6+, Se6+, Mo6+). Radiochemistry 2018, 60, 352–361; https://doi.org/10.1134/s1066362218040033.Search in Google Scholar
12. Krivovichev, S. V. Structural crystallography of inorganic oxysalts. Crystallogr. Rev. 2009, 15, 279–281.10.1093/acprof:oso/9780199213207.001.1Search in Google Scholar
13. Nazarchuk, E. V., Charkin, D. O., Siidra, O. I., Kalmykov, S. N. Organically templated layered uranyl molybdate [C3H9NH+]4[(UO2)3(MoO4)5] structurally based on mineral-related modular units. Minerals 2020, 10, 659–665; https://doi.org/10.3390/min10080659.Search in Google Scholar
14. Nazarchuk, E. V., Siidra, O. I., Krivovichev, S. V. Synthesis and crystal structure of Ag2[(UO2)6(MoO4)7(H2O)2](H2O)2. Radiochemistry 2016, 58, 1–50; https://doi.org/10.1134/s106636221601001x.Search in Google Scholar
15. Nazarchuk, E. V., Siidra, O. I., Krivovichev, S. V., Malcherek, T., Depmeier, W. First mixed alkaline uranyl molybdates: synthesis and crystal structures of CsNa3[(UO2)4O4(Mo2O8)] and Cs2Na8[(UO2)8O8(Mo5O20)]. Z. Anorg. Allg. Chem. 2009, 635, 1231–1235; https://doi.org/10.1002/zaac.200801162.Search in Google Scholar
16. Nazarchuk, E. V., Krivovichev, S. V., Burns, P. C. Crystal structure of Tl2[(UO2)2(MoO4)3] and crystal chemistry of the compounds M2[(UO2)2(MoO4)3] (M = Tl, Rb, Cs). Radiochemistry 2005, 47, 447–451; https://doi.org/10.1007/s11137-005-0115-5.Search in Google Scholar
17. Krivovichev, S. V., Burns, P. C., Armbruster, T., Nazarchuk, E. V., Depmeier, W. Chiral open-framework uranyl molybdates. 2. Flexibility of the U:Mo = 6:7 frameworks: syntheses and crystal structures of (UO2)0.82[C8H20N]0.36[(UO2)6(MoO4)7(H2O)2](H2O)n and [C6H14N2][(UO2)6(MoO4)7(H2O)2](H2O)m. Microporous Mesoporous Mater. 2005, 78, 217–224; https://doi.org/10.1016/j.micromeso.2004.10.019.Search in Google Scholar
18. Krivovichev, S. V., Armbruster, T., Chernyshov, D. Y., Nazarchuk, E. V., Depmeier, W. Chiral open-framework uranyl molybdates. 3. Synthesis, structure and the C2221→P212121 low-temperature phase transition of [C6H16N]2[(UO2)6(MoO4)7(H2O)2](H2O)2. Microporous Mesoporous Mater. 2005, 78, 225–234; https://doi.org/10.1016/j.micromeso.2004.10.020.Search in Google Scholar
19. Krivovichev, S. V., Cahill, C. L., Nazarchuk, E. V., Armbruster, T., Depmeier, W. Chiral open-framework uranyl molybdates. 1. Topological diversity: synthesis and crystal structure of [(C2H5)2NH2]2[(UO2)4(MoO4)5(H2O)](H2O). Microporous Mesoporous Mater. 2005, 78, 209–215; https://doi.org/10.1016/j.micromeso.2004.10.018.Search in Google Scholar
20. Nazarchuk, E. V., Krivovichev, S. V., Filatov, S. K. Phase transitions and high-temperature crystal chemistry of polymorphous modifications of Cs2(UO2)2(MoO4). Radiochemistry 2004, 46, 438–440; https://doi.org/10.1007/s11137-005-0005-x.Search in Google Scholar
21. Obbade, S., Dion, C., Bekaert, E., Yagoubi, S., Saadi, M., Abraham, F. Synthesis and crystal structure of new uranyl tungstates M2(UO2)(W2O8) (M = Na, K), M2(UO2)2(WO5)O (M = K, Rb) and Na10(UO2)8(W5O20)O8. J. Solid State Chem. 2003, 172, 305–318; https://doi.org/10.1016/s0022-4596(03)00103-8.Search in Google Scholar
22. Alekseev, E. V., Krivovichev, S. V., Depmeier, W., Armbruster, T., Katzke, H., Suleimanov, E. V., Chuprunov, E. V. One-dimensional chains in uranyl tungstates: syntheses and structures of A8[(UO2)4(WO4)4(WO5)2] (A = Rb,Cs) and Rb6[(UO2)2O(WO4)4]. J. Solid State Chem. 2006, 179, 2977–2987; https://doi.org/10.1016/j.jssc.2006.05.015.Search in Google Scholar
23. Alekseev, E. V., Krivovichev, S. V., Depmeier, W., Malcherek, T., Suleimanov, E. V., Chuprunov, E. V. The crystal structure of Li4[(UO2)2(W2O10)] and crystal chemistry of Li uranyl tungstates. Z. Kristallogr. - Cryst. Mater. 2007, 222, 391–395; https://doi.org/10.1524/zkri.2007.222.8.391.Search in Google Scholar
24. Siidra, O. I., Nazarchuk, E. V., Petrunin, A. A., Kayukov, R. A., Krivovichev, S. V. Nanoscale hemispheres in novel mixed-valent uranyl chromate(V,VI), (C3NH10)10[(UO2)13(Cr12O42)(CrO4)6(H2O)6](H2O)6. Inorg. Chem. 2012, 51, 9162–9164; https://doi.org/10.1021/ic301288r.Search in Google Scholar PubMed
25. Siidra, O., Nazarchuk, E., Bocharov, S., Depmeier, W., Zadoya, A. Formation of co-racemic uranyl chromate constructed from chiral layers of different topology. Acta Crystallogr. 2017, B73, 101–111; https://doi.org/10.1107/s205252061601917x.Search in Google Scholar
26. Nazarchuk, E. V., Siidra, O. I., Kayukov, R. A. Synthesis and crystal-chemical features of two new uranyl chromates with the structures derived from [(UO2)(TO4)(H2O)n]0 (T = Cr6+, S6+, Se6+, n = 0–2). Radiochemistry 2016, 58, 571–577; https://doi.org/10.1134/s1066362216060023.Search in Google Scholar
27. Nazarchuk, E. V., Siidra, O. I., Zadoya, A. I., Agakhanov, A. A. Host-guest structural architectures in hydrous alkaline (Li, K) uranyl chromates and dichromates. Inorg. Chem. Commun. 2015, 62, 15–18; https://doi.org/10.1016/j.inoche.2015.10.025.Search in Google Scholar
28. Siidra, O. I., Nazarchuk, E. V., Krivovichev, S. V. Mixed-ligand coordination of the (UO2)2+ cation and apophyllite topology of uranyl chlorochromate layer in the structure of ((CH3)2CHNH3)[(UO2)(CrO4)Cl(H2O)]. Z. Kristallogr. - Cryst. Mater. 2012, 227, 530–534; https://doi.org/10.1524/zkri.2012.1471.Search in Google Scholar
29. Siidra, O. I., Nazarchuk, E. V., Krivovichev, S. V. Isopropylammonium layered uranyl chromates: syntheses and crystal structures of [(CH3)2CHNH3]3[(UO2)3(CrO4)2O(OH)3] and [(CH3)2CHNH3]2[(UO2)2(CrO4)3(H2O)]. Z. Anorg. Allg. Chem. 2012, 638, 976–981; https://doi.org/10.1002/zaac.201100558.Search in Google Scholar
30. Siidra, O. I., Nazarchuk, E. V., Krivovichev, S. V. Highly kinked uranyl chromate nitrate layers in the crystal structures of A[(UO2)(CrO4)(NO3)] (A = K, Rb). Z. Anorg. Allg. Chem. 2012, 638, 982–986; https://doi.org/10.1002/zaac.201200009.Search in Google Scholar
31. Siidra, O. I., Nazarchuk, E. V., Krivovichev, S. V. Syntheses and crystal structures of two novel alkaline uranyl chromates A2(UO2)(CrO4)2 (A = Rb, Cs) with bidentate coordination mode of uranyl ions by chromate anions. J. Solid State Chem. 2012, 187, 286–29; https://doi.org/10.1016/j.jssc.2012.01.037.Search in Google Scholar
32. Siidra, O. I., Nazarchuk, E. V., Krivovichev, S. V. Unprecedented bidentate coordination of the uranyl cation by the chromate anion in the structure of [(CH3)2CHNH3]2[UO2(CrO4)2]. Eur. J. Inorg. Chem. 2012, 2, 194–197; https://doi.org/10.1002/ejic.201101192.Search in Google Scholar
33. Herbst, R. S., Law, J. D., Todd, T. A., Romanovskiy, V. N., Smirnov, I. V., Babain, V. A., Esimantovskiy, V. N., Zaitsev, B. N. Development of the universal extraction (unex) process for the simultaneous recovery of Cs, Sr, and actinides from acidic radioactive wastes. Separ. Sci. Technol. 2003, 38, 2685; https://doi.org/10.1081/ss-120022567.Search in Google Scholar
34. Delmore, J. E., Snyder, D. C., Tranter, T., Mann, N. Cesium isotope ratios as indicators of nuclear power plant operations. J. Environ. Radioact. 2011, 102, 1008–11; https://doi.org/10.1016/j.jenvrad.2011.06.013.Search in Google Scholar PubMed
35. Degueldre, C. A., Dawson, R. J., Najdanovic-Visak, V. Nuclear fuel cycle, with a liquid ore and fuel: toward renewable energy. Sustain. Energy Fuels 2019, 3, 1693–1700; https://doi.org/10.1039/c8se00610e.Search in Google Scholar
36. Gabaraev, B. A., Smirnov, Yu., Cherepnin, Yu. S. Nuclear Power Engineering of the XXI Century; MEI Publishing House: Moscow, 2013.Search in Google Scholar
37. Babichev, B. A., Esimantovskiy, V. M., Kavetsky, A. G., Fireplaces, V. M. Characteristics of the fraction containing curium and rare earth elements obtained during processing of VVER-1000 SNF. Proc. Khlopin Inst. 2003, 10, 106–117.Search in Google Scholar
38. Kovba, L. M., Ippolitova, E. A., Simanov, Y. P., Spitsyn, V. I. The crystal structure of uranates. 1. Uranates with tetragonal layers (UO2)O2. Dokl. RAN 1958, 120, 1042–1044.Search in Google Scholar
39. Zachariasen, W. H. Crystal chemical studies of the 5f-Series of elements. XX. The crystal structure of tri-potassium uranyl fluoride. Acta Crystallogr. 1954, 7, 783–787; https://doi.org/10.1107/s0365110x54002447.Search in Google Scholar
40. Sundberg, I., Sillén, L. G. On the crystal structure of KUO2VO4 (Synthetic anhydrous carnotite). Ark. Kem. Mineral. Geol. 1949, 1, 337–351.Search in Google Scholar
41. Serezhkina, L. B., Trunov, V. K., Kholodkovskaya, L. N., Kuchumova, N. V. Crystal structure of KUO2CrO4(OH) 1.5(H2O). Coord. Chem. 1990, 16, 1288–1291.Search in Google Scholar
42. Sykora, R. E., McDaniel, S. M., Wells, D. M., Albrecht Schmitt, T. E. Mixed-metal uranium(VI) iodates: hydrothermal syntheses, structures and reactivity of Rb(UO2(CrO4)(IO3)(H2O)), A2(UO2(CrO4)(IO3)2) (A = K, Rb, Cs) and K2(UO2(MoO4)(IO3)2). Inorg. Chem. 2002, 41, 5126–5132; https://doi.org/10.1021/ic025773y.Search in Google Scholar PubMed
43. Verevkin, A. G., Vologzhanina, A. V., Serezhkina, L. B., Serezhkin, V. N. X-ray diffraction study of Rb2[(UO2)2(CrO4)3(H2O)2] 4H2O. Kristallografiya 2010, 55, 645–650; https://doi.org/10.1134/s1063774510040115.Search in Google Scholar
44. Siidra, O. I., Nazarchuk, E. V., Suknotova, A. N., Kayukov, R. A., Krivovichev, S. V. Cr(VI) trioxide as a starting material for the synthesis of novel zero-, one-, and two-dimensional uranyl dichromates and chromate-dichromates. Inorg. Chem. 2013, 52, 4729–4735; https://doi.org/10.1021/ic400341q.Search in Google Scholar PubMed
45. Siidra, O. I., Nazarchuk, E. V., Bocharov, S. N., Depmeier, W., Kayukov, R. A. Microporous uranyl chromates successively formed by evaporation from acidic solution. Z. Kristallogr. - Cryst. Mater. 2018, 233, 1–8; https://doi.org/10.1515/zkri-2017-2059.Search in Google Scholar
46. Murphy, G. L., Langer, E. M., Walter, O. B., Wang, Y. C., Wang, S. C., Alekseev, E. V. Insights into the structural chemistry of anhydrous and hydrous hexavalent uranium and neptunium dinitrato, trinitrato, and tetranitrato complexes. Inorg. Chem. 2020, 59, 7204–7215; https://doi.org/10.1021/acs.inorgchem.0c00657.Search in Google Scholar PubMed
47. Doran, M. B., Norquist, A. J., Hare, D. O. catena-Poly[tetramethylammonium [[(nitrato-κ2-O,O)dioxouranium]-mue3-sulfato]]. Acta Crystallogr. 2003, E59, m373–m375; https://doi.org/10.1107/s1600536803010808.Search in Google Scholar
48. Liu, D. S., Huang, G. S., Luo, Q. Y., Xu, Y. P., Li, X. F. Poly[tetramethylammonium [nitratouranyl-μ3-selenito]]. Acta Crystallogr. 2006, E62, m1584–m1585; https://doi.org/10.1107/s1600536806022045.Search in Google Scholar
49. Siidra, O. I., Nazarchuk, E. V., Zadoya, A. I. Novel [(UO2)O6(NO3)n] (n = 1, 2) based units in organically templated uranyl compounds. Inorg. Chem. Commun. 2014, 50, 4–7; https://doi.org/10.1016/j.inoche.2014.10.009.Search in Google Scholar
50. Nazarchuk, E. V., Charkin, D. O., Siidra, O. I., Gurzhiy, V. V. Crystal-chemical features of U(VI) compounds with inorganic complexes derived from [(UO2)(TO4)(H2O)n], T = S, Cr, Se: synthesis and crystal structures of two new uranyl sulfates. Radiochemistry 2018, 60, 345–351; https://doi.org/10.1134/s1066362218040021.Search in Google Scholar
51. Krivovichev, S. V., Burns, P. C. Structural topology of potassium uranyl chromates: crystal structures of K8[(UO2)(CrO4)4](NO3)2, K5[(UO2)(CrO4)3](NO3)(H2O)3, K4[(UO2)3(CrO4)5](H2O)8 and K2[(UO2)2(CrO4)3(H2O)2](H2O)4. Z. Kristallogr. 2003, 218, 725–732; https://doi.org/10.1524/zkri.218.11.725.20298.Search in Google Scholar
52. Siidra, O. I., Nazarchuk, E. V., Charkin, D. O., Kalmykov, S. N., Zadoya, A. I. Complex uranyl dichromates templated by aza-crowns. Crystals 2018, 8, 462–474; https://doi.org/10.3390/cryst8120462.Search in Google Scholar
53. Casari, B. M., Oberg, E., Langer, V. The orthorhombic polymorph of diammonium trichromate(VI) decaoxide, α–(NH4)2Cr3O10. J. Chem. Crystallogr. 2007, 37, 135–140; https://doi.org/10.1007/s10870-006-9165-6.Search in Google Scholar
54. Gili, P., Lorenzo-Louis, P. A. Compounds of chromium(VI) as ligands. Coord. Chem. Rev. 1999, 193-195, 747–768; https://doi.org/10.1016/s0010-8545(98)00256-2.Search in Google Scholar
55. Nazarchuk, E. V., Charkin, D. O., Kozlov, D. V., Siidra, O. I., Kalmykov, S. N. Topological analysis of the layered uranyl compounds bearing slabs with UO2:TO4 ratio of 2:3. Radiochim. Acta 2019, 108, 249–260.10.1515/ract-2019-3183Search in Google Scholar
56. Siidra, O. I., Nazarchuk, E. V., Sysoeva, E. V., Kayukov, R. A., Depmeier, W. Isolated uranyl chromate and polychromate units in crown ether templated compounds. Eur. J. Inorg. Chem. 2014, 2014, 5495–5498; https://doi.org/10.1002/ejic.201402806.Search in Google Scholar
57. Kolitsch, U. Alpha-(Cs2Cr3O10). Acta Crystallogr. 2003, E59, i164–i166; https://doi.org/10.1107/s1600536803026473.Search in Google Scholar
58. Loefgren, P. The crystal structure of Rb2Cr3O10. Chem. Scripta 1974, 5, 91–96.Search in Google Scholar
59. Mattes, R., Meschede, W. Zur struktur des Cr3O10(2−) – ions in beta-Cs2Cr3O10. Z. Anorg. Allg. Chem. 1973, 395, 216–222; https://doi.org/10.1002/zaac.19733950210.Search in Google Scholar
60. Blum, D., Guitel, J. C. Structure de la forme hexagonale du trichromate d’ammonium: (NH4)2. Acta Crystallogr. 1980, B36, 135–137; https://doi.org/10.1107/s0567740880002610.Search in Google Scholar
61. Blum, D., Averbuch-Pouchot, M. T., Guitel, J. C. Structure du tripolychromate de potassium K2Cr3O10. Acta Crystallogr. 1979, B35, 454–456; https://doi.org/10.1107/s0567740879003769.Search in Google Scholar
62. Sheldrick, G. M. Short history of SHELX. Acta Crystallogr. 2008, А64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed
63. Pressprich, M. R., Willet, R. D., Poshusta, R. D., Saunders, S. C., Davis, H. B., Gard, G. L. Preparation and crystal structure of dipyrazinium trichromate and bond length correlation for chromate anions of the form CrnO2−3n+1. Inorg. Chem. 1988, 27, 260; https://doi.org/10.1021/ic00275a009.Search in Google Scholar
64. Betke, U., Wickleder, M. Oleum and sulfuric acid as reaction media: the actinide examples UO2(S2O7) – lt (low temperature), UO2(S2O7) – ht (high temperature), UO2(HSO4)2, An(SO4)2 (An = Th, U), Th4(HSO4)2(SO4)7 and Th(HSO4)2(SO4). Eur. J. Inorg. Chem. 2012, 2, 306–317; https://doi.org/10.1002/ejic.201100975.Search in Google Scholar
65. Yu, N., Kegler, P., Klepov, V. V., Dellen, J. Influence of extreme conditions on the formation and structures of caesium uranium(VI) arsenates. Dalton Trans. 2015, 44, 20735–20744; https://doi.org/10.1039/c5dt03842a.Search in Google Scholar PubMed
66. Alekseev, E. S., Krivovichev, S. V., Depmeier, W. K2[(UO2)As2O7] – the first uranium polyarsenate. Z. Anorg. Allg. Chem. 2007, 633, 1125–1126; https://doi.org/10.1002/zaac.200700020.Search in Google Scholar
67. Linde, S. A., Gorbunova, Yu. E., Lavrov, A. V., Pobedina, A. B. Synthesis and structure of crystals of uranyl pyrophosphates M2UO2P2O7 (M = rubidium, cesium). Neorg. Mater. 1981, 17, 1062–1066.Search in Google Scholar
68. Stephens, J. S., Cruickshank, D. W. J. The crystal structure of (CrO3) infinite. Acta Crystallogr. 1970, B26, 222–226; https://doi.org/10.1107/s0567740870002182.Search in Google Scholar
69. Garrison, J. C., Simons, R. S., Talley, J. M., Wesdemiotis, C., Tessier, C. A., Youngs, W. J. Synthesis and structural characterization of an imidazolium-linked cyclophane and the silver complex of an N-heterocyclic carbene-linked cyclophane. Organometallics 2001, 20, 1276; https://doi.org/10.1021/om010085s.Search in Google Scholar
70. Cui, W., Li, P., Zheng, S., Zhang, H., Liu, C., Chen, Y., Zhang, Y. Phase equilibria for the KHSO4–H2SO4–H2O and KHSO4–CrO3–H2SO4–H2O systems at 313.15 K. J. Chem. Eng. Data 2016, 61, 354–358; https://doi.org/10.1021/acs.jced.5b00594.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2020-0078).
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Original papers
- Phase stability analysis of shocked ammonium dihydrogen phosphate by X-ray and Raman scattering studies
- Effect of solution acidity on the crystallization of polychromates in uranyl-bearing systems: synthesis and crystal structures of Rb2[(UO2)(Cr2O7)(NO3)2] and two new polymorphs of Rb2Cr3O10
- Novel tetrazole PtII and PdII complexes with enhanced water solubility: synthesis, structural characterization and evaluation of antiproliferative activity
- Hydrogen-bonding in mono-, di- and tetramethylammonium dihydrogenphosphites
- Photophysical property change of N-(5-bromo-salicylidene)-3-aminoethylpyridine monohydrated crystals via dehydration phase transition
Articles in the same Issue
- Frontmatter
- In this issue
- Original papers
- Phase stability analysis of shocked ammonium dihydrogen phosphate by X-ray and Raman scattering studies
- Effect of solution acidity on the crystallization of polychromates in uranyl-bearing systems: synthesis and crystal structures of Rb2[(UO2)(Cr2O7)(NO3)2] and two new polymorphs of Rb2Cr3O10
- Novel tetrazole PtII and PdII complexes with enhanced water solubility: synthesis, structural characterization and evaluation of antiproliferative activity
- Hydrogen-bonding in mono-, di- and tetramethylammonium dihydrogenphosphites
- Photophysical property change of N-(5-bromo-salicylidene)-3-aminoethylpyridine monohydrated crystals via dehydration phase transition