Startseite Cd2 and Co2 dumbbell formation in the yttrium-rich intermetallic compounds Y14Ni3Cd3 and Y6Co2Zn
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cd2 and Co2 dumbbell formation in the yttrium-rich intermetallic compounds Y14Ni3Cd3 and Y6Co2Zn

  • Theresa Block und Rainer Pöttgen EMAIL logo
Veröffentlicht/Copyright: 31. August 2020

Abstract

The yttrium-rich intermetallic compounds Y14Ni3Cd3 and Y6Co2Zn were obtained by direct reactions of the elements in sealed tantalum tubes in an induction furnace. Both samples were characterized by X-ray powder diffraction and the structures were refined from single-crystal X-ray diffraction data: Lu14Co3In3 type, P42/nmc, a = 960.06(5), c = 2314.9(1) pm, wR2 = 0.0669, 2034 F2 values, 63 parameters for Y14Ni3.16(2)Cd2.84(2) and Ho6Co2Ga type, Immm, a = 943.08(7), b = 950.08(7), c = 997.64(7) pm, wR2 = 0.0476, 981 F2 values, 34 parameters for Y6Co2Zn. One cadmium site shows a small degree of Cd/Ni mixing, leading to the composition Y14Ni3.16(2)Cd2.84(2). Although both compounds crystallize with significantly different structure types, they show very similar monomeric building units: (i) transition metal centered trigonal prisms of yttrium, (ii) empty Y6 octahedra and (iii) icosahedral coordination of the cadmium respectively zinc atoms. The condensation patterns of these building units are discussed and for Y14Ni3.16(2)Cd2.84(2), we elaborate a crystal chemical building principle along with the rare earth metal-rich phases RE15Rh5Cd2 (La15Rh5Cd2 type), RE23T7X4 (Pr23Ir7Mg4 type), RE4TX (Gd4RhMg type) and RE10TX3/RE9TX4 (ordered Co2Al5 versions). The structures of Y14Ni3Cd3 and Y6Co2Zn show dumbbell formation: 306 pm Cd–Cd in Y14Ni3Cd3 and 224 pm Co1–Co1 and 246 pm Co2–Co2 in Y6Co2Zn.


Corresponding author: Rainer Pöttgen,Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149Münster, Germany, E-mail:

Acknowledgments

We thank Dipl.-Ing. Jutta Kösters for the collection of the single crystal diffractometer data and M. Sc. M. K. Reimann and A. Savourat for experimental help.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest statements: The authors declare no conflicts of interest regarding this article.

References

1. Rodewald, U. Ch., Chevalier, B., Pöttgen, R. J. Solid State Chem. 2007, 180, 1720.10.1016/j.jssc.2007.03.007Suche in Google Scholar

2. Tappe, F., Pöttgen, R. Rev. Inorg. Chem. 2011, 31, 5.10.1515/revic.2011.007Suche in Google Scholar

3. Johnscher, M., Block, T., Pöttgen, R. Z. Anorg. Allg. Chem. 2015, 641, 369.10.1002/zaac.201400475Suche in Google Scholar

4. Stein, S., Pöttgen, R. Z. Kristallogr. 2018, 233, 607.10.1515/zkri-2017-2124Suche in Google Scholar

5. Schappacher, F. M., Rodewald, U. Ch., Pöttgen, R. Z. Naturforsch. 2008, 63b, 1127.10.1515/znb-2008-0918Suche in Google Scholar

6. Zaremba, V. I., Kalychak, Y. M., Zavalii, P. Y. Sov. Phys. Crystallogr. 1992, 37, 178.Suche in Google Scholar

7. Zaremba, V. I., Kalychak, Y. M., Dzevenko, M. V., Rodewald, U. Ch., Heying, B., Pöttgen, R. Z. Naturforsch. 2006, 61b, 23.10.1515/znb-2006-0105Suche in Google Scholar

8. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133.Suche in Google Scholar

9. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143.10.1524/zkri.1999.214.3.143Suche in Google Scholar

10. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73.10.1107/S0021889877012898Suche in Google Scholar

11. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786.10.1107/S0021889807029238Suche in Google Scholar

12. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345.10.1515/zkri-2014-1737Suche in Google Scholar

13. Zaremba, R., Rodewald, U. Ch., Pöttgen, R. Z. Naturforsch. 2007, 62b, 1574.10.1515/znb-2007-1216Suche in Google Scholar

14. Stegemann, F., Janka, O. Z. Naturforsch. 2019, 74b, 125.10.1515/znb-2018-0196Suche in Google Scholar

15. Stegemann, F., Janka, O. Monatsh. Chem. 2019, 150, 1175.10.1007/s00706-019-02434-2Suche in Google Scholar

16. Gladyshevskii, R. E., Grin, Y. N., Yarmolyuk, Y. P. Dopov. Akad. Nauk Ukr. RSR, Ser. A 1983, 45, 67.Suche in Google Scholar

17. Burnett, V. W., Yazici, D., White, B. D., Dilley, N. R., Friedman, A. J., Brandom, B., Maple, M. B. J. Solid State Chem. 2014, 215, 114.10.1016/j.jssc.2014.03.035Suche in Google Scholar

18. Tappe, F., Schwickert, C., Pöttgen, R. Intermetallics 2012, 24, 33.10.1016/j.intermet.2012.01.019Suche in Google Scholar

19. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2019/20); ASM International®: Materials Park, OH (USA), 2019.Suche in Google Scholar

20. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar

21. Le Roy, J., Moreau, J.-M., Paccard, D., Parthé, E. Acta Crystallogr. 1977, B33, 3406.10.1107/S0567740877011091Suche in Google Scholar

22. Lemaire, R., Paccard, D. Bull. Soc. Fr. Mineral. Cristallogr. 1967, 90, 311.10.3406/bulmi.1967.6129Suche in Google Scholar

23. O’Keeffe, M., Andersson, S. Acta Crystallogr. 1977, A33, 914.10.1107/S0567739477002228Suche in Google Scholar

24. Lidin, S., Jacob, M., Andersson, S. J. Solid State Chem. 1995, 114, 36.10.1006/jssc.1995.1005Suche in Google Scholar

25. Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O’Keeffe, M., Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 1504.10.1021/ja045123oSuche in Google Scholar PubMed

26. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Suche in Google Scholar

27. Johnscher, M., Pöttgen, R. Z. Naturforsch. 2012, 67b, 1225.10.5560/znb.2012-0227Suche in Google Scholar

28. Gulay, N. L., Kalychak, Ya. M., Pöttgen, R. Z. Naturforsch. 2020, 75b. https://doi.org/10.1515/znb-2020-0104.Suche in Google Scholar

29. Stegemann, F., Janka, O. Z. Naturforsch. 2018, 73b, 927.10.1515/znb-2018-0153Suche in Google Scholar

30. Sichevich, O. M., Komarovskaya, L. P., Grin, Y. N., Yarmolyuk, Y. P., Skolozdra, R. V. Ukr. Fiz. Zh. Russ. Ed. 1984, 29, 1342.Suche in Google Scholar

31. Zaremba, R. I., Kalychak, Ya. M., Rodewald, U. Ch., Pöttgen, R., Zaremba, V. I. Z. Naturforsch. 2006, 61b, 942.10.1515/znb-2006-0803Suche in Google Scholar

32. Dzevenko, M. V., Zaremba, R. I., Hlukhyy, V. H., Rodewald, U. Ch., Pöttgen, R., Kalychak, Ya. M. Z. Anorg. Allg. Chem. 2007, 633, 724.10.1002/zaac.200600328Suche in Google Scholar

33. Castro-Castro, L. M., Chen, L., Corbett, J. D. J. Solid State Chem. 2007, 180, 3172.10.1016/j.jssc.2007.09.012Suche in Google Scholar

34. Maggard, P. A., Corbett, J. D. Inorg. Chem. 1998, 37, 814.10.1021/ic971107zSuche in Google Scholar

35. Mattausch, H.-J., Hendricks, J. B., Eger, R., Corbett, J. D., Simon, A. Inorg. Chem. 1980, 19, 2128.10.1021/ic50209a057Suche in Google Scholar

36. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-10641-9Suche in Google Scholar

37. Li, T., Schulz, S., Roesky, P. W. Chem. Soc. Rev. 2012, 41, 3759.10.1039/c2cs15343bSuche in Google Scholar PubMed

38. Ayala, R., Galindo, A. Int. J. Quantum Chem. 2019, 119, e25823.10.1002/qua.25823Suche in Google Scholar

Received: 2020-06-22
Accepted: 2020-06-23
Published Online: 2020-08-31
Published in Print: 2020-10-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2020-0060/html
Button zum nach oben scrollen