Crystal structure of the synthetic analogue of iwateite, Na2BaMn(PO4)2: an X-ray powder diffraction and Raman study
Abstract
We have investigated the crystal structure of the synthetic analogue of the mineral iwateite using powder diffraction and Raman spectroscopy. Na2BaMn(PO4)2 crystallizes in the space group P
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Nishio-Hamane, D., Minakawa, T., Okada, H. Iwateite, Na2BaMn(PO4)2, a new mineral from the Tanohata mine, Iwate Prefecture, Japan. J. Mineral. Petrol. Sci. 2014, 109, 34–37. https://doi.org/10.2465/jmps.131020a.Search in Google Scholar
2. Okada, K., Ossaka, J. Structures of potassium sodium sulphate and tripotassium sodium disulphate. Acta Cryst. B 1980, 36, 919–921. https://doi.org/10.1107/s0567740880004852.Search in Google Scholar
3. Berg, R. W., Boghosian, S., Bjerrum, N. J., Fehrmann, R., Krebs, B., Strater, N., Mortensen, O. S., Papatheodorou, G. N. Crystal structure and spectroscopic characterization of CsV(SO4)2. Evidence for an electronic Raman transition. Inorg. Chem. 1993, 32, 4714–4720. https://doi.org/10.1021/ic00074a012.Search in Google Scholar
4. Murashko, M. N., Pekov, I. V., Krivovichev, S. V., Chernyatyeva, A. P., Yapaskurt, V. O., Zadov, A. E., Zelensky, M. E. Steklite, KAl(SO4)2: a finding at the Tolbachik Volcano, Kamchatka, Russia, validating its status as a mineral species and crystal structure. Geol. Ore Deposits 2013, 55, 594–600. https://doi.org/10.1134/s1075701513070088.Search in Google Scholar
5. Boukhris, A., Hidouri, M., Glorieux, B., Ben Amara, M. Correlation between structure and photoluminescence of the europium doped glaserite-type phosphate Na2SrMg(PO4)2. Mater. Chem. Phys. 2012, 137, 26–33. https://doi.org/10.1016/j.matchemphys.2012.07.002.Search in Google Scholar
6. Boukhris, A., Hidouri, M., Glorieux, B., Ben Amara, M. Na2BaMg(PO4)2: synthesis, crystal structure and europium photoluminescence properties. J. Rare Earths 2013, 31, 849–856. https://doi.org/10.1016/s1002-0721(12)60369-x.Search in Google Scholar
7. Lu, J., Du, F., Zhu, R., Huang, Y., Jin Seo, H. Phase formations and tunable red luminescence of Na2CaMg1−xMnx(PO4)2 (x = 0.05–1.0). J. Mater. Chem. 2011, 21, 16398–16405. https://doi.org/10.1039/c1jm12854j.Search in Google Scholar
8. Yonesaki, Y., Matsuda, C. Crystal structure of Na2MMgP2O8 (M: Ba,Sr,Ca) orthophosphates and their luminescence properties activated by Eu2+; analogous structural behaviors of glaserite-type phosphates and silicates. J. Solid State Chem. 2011, 184, 3247–3252. https://doi.org/10.1016/j.jssc.2011.10.011.Search in Google Scholar
9. Yonesaki, Y., Matsuda, C., Dong, Q. Structural consideration on the emission properties of Eu2+-doped Li2BaMgP2O8 and Na2BaMgP2O8 orthophosphates. J. Solid State Chem. 2012, 196, 404–408. https://doi.org/10.1016/j.jssc.2012.07.001.Search in Google Scholar
10. Zhou, J., Xia, Z. Synthesis, luminescence properties and energy transfer behavior of Na2CaMg(PO4)2:Eu2+, Mn2+ phosphors. J. Lumin. 2014, 146, 22–26. https://doi.org/10.1016/j.jlumin.2013.09.031.Search in Google Scholar
11. Fuchs, L. H., Olsen, E., Henderson, E. P. On the occurrence of brianite and panethite, two new phosphate minerals from the Dayton meteorite. Geochim. Cosmochim. Acta 1967, 31, 1711–1719. https://doi.org/10.1016/0016-7037(67)90118-4.Search in Google Scholar
12. Moore, P. B. Brianite, Na2CaMg(PO4)2: a phosphate analog of Merwinite, Ca2CaMg(SiO4)2. Am. Mineral. 1975, 60, 717–718.Search in Google Scholar
13. Degen, T., Sadki, M., Bron, E., König, U., Nénert, G. The HighScore suite. Powder Diffract. 2014, 29, S13–S18. https://doi.org/10.1017/s0885715614000840.Search in Google Scholar
14. Dollase, W. A. Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J. Appl. Cryst. 1986, 19, 267–272. https://doi.org/10.1107/s0021889886089458.Search in Google Scholar
15. March, A. Mathematische Theorie der Regelung nach der Korngestah bei affiner Deformation. Z. Kristallogr. 1932, 81, 285–297. https://doi.org/10.1524/zkri.1932.81.1.285.Search in Google Scholar
16. Momma, K., Izumi, F. VESTA 3 for three‐dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. https://doi.org/10.1107/s0021889811038970.Search in Google Scholar
17. Nespolo, M, Guillot, B. CHARDI2015: charge distribution analysis of non-molecular structures. J. Appl. Cryst. 2016, 49, 317–321. https://doi.org/10.1107/s1600576715024814.Search in Google Scholar
18. Nespolo, M. Charge distribution as a tool to investigate structural details. IV. A new route to heteroligand polyhedra. Acta Cryst. B 2016, 72, 51–66. https://doi.org/10.1107/s2052520615019472.Search in Google Scholar
19. Park, C.-H., Kim, T.-H., Yonesaki, Y., Kumada, N. A re-investigation of the crystal structure and luminescence of BaCa2MgSi2O8:Eu2+. J. Solid State Chem. 2011, 184, 1566–1570. https://doi.org/10.1016/j.jssc.2011.04.030.Search in Google Scholar
20. Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., Wondratschek, H. Bilbao crystallographic server: useful databases and tools for phase-transition studies. Phase Trans. Multinational J. 2003, 76, 155–170. https://doi.org/10.1080/0141159031000076110.Search in Google Scholar
21. Henderson, G. S., Neuville, D. R., Downs, R. T. Reviews in mineralogy and geochemistry. In Spectroscopic methods in mineralogy and materials sciences, Vol. 78, 2014.10.1515/9781501510618Search in Google Scholar
22. Litasov, K. D., Podgornykh, N. M. Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite. J. Raman Spectrosc. 2017, 48, 1518–1527. https://doi.org/10.1002/jrs.5119.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Miscellaneous
- Wolfgang Jeitschko, 27.05.1936--05.08.2020
- Original papers
- Superstructure formation in Sc5Cu2In4
- Cd2 and Co2 dumbbell formation in the yttrium-rich intermetallic compounds Y14Ni3Cd3 and Y6Co2Zn
- Crystal structure of the synthetic analogue of iwateite, Na2BaMn(PO4)2: an X-ray powder diffraction and Raman study
- Layered calcium hydrogen selenite chlorides Ca(HSeO3)Cl and Ca(HSeO3)Cl(H2O), the first halides obtained in СaCl2–H2SeO3–H2O system
- Crystal structure of incommensurate ηʺ-Cu1.235Sn intermetallic
- Synthesis, properties and crystal structure of novel Copper(II) ammine complex with [Pd(CN)4]2− building blocks
- Water soluble biguanide salts and their 1,3,5-triazine derivatives as inhibitors of acetylcholinesterase and α-glucosidase
- Letter
- Attractive halogen···halogen interactions in crystal structure of trans-dibromogold(III) complex
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Miscellaneous
- Wolfgang Jeitschko, 27.05.1936--05.08.2020
- Original papers
- Superstructure formation in Sc5Cu2In4
- Cd2 and Co2 dumbbell formation in the yttrium-rich intermetallic compounds Y14Ni3Cd3 and Y6Co2Zn
- Crystal structure of the synthetic analogue of iwateite, Na2BaMn(PO4)2: an X-ray powder diffraction and Raman study
- Layered calcium hydrogen selenite chlorides Ca(HSeO3)Cl and Ca(HSeO3)Cl(H2O), the first halides obtained in СaCl2–H2SeO3–H2O system
- Crystal structure of incommensurate ηʺ-Cu1.235Sn intermetallic
- Synthesis, properties and crystal structure of novel Copper(II) ammine complex with [Pd(CN)4]2− building blocks
- Water soluble biguanide salts and their 1,3,5-triazine derivatives as inhibitors of acetylcholinesterase and α-glucosidase
- Letter
- Attractive halogen···halogen interactions in crystal structure of trans-dibromogold(III) complex