Startseite Superstructure formation in Sc5Cu2In4
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Superstructure formation in Sc5Cu2In4

  • Nataliya L. Gulay , Rolf-Dieter Hoffmann , Vasyl‘ I. Zaremba , Yaroslav M. Kalychak und Rainer Pöttgen EMAIL logo
Veröffentlicht/Copyright: 21. August 2020

Abstract

Polycrystalline Sc5Cu2In4 was synthesized by induction melting of the elements and small single crystals were obtained by a slow cooling sequence. Sc5Cu2In4 is the first coinage metal representative in the family of the so-called 5-2-4 intermetallics. The Zr5Ir2In4 type structure of Sc5Cu2In4 was refined from single crystal X-ray diffractometer data: Pnma, a = 1716.75(6), b = 677.94(12), c = 760.69(2) pm, wR2 = 0.0531, 1932 F2 values and 58 variables. Sc5Cu2In4 adopts a superstructure of the Lu5Ni2In4 type (doubling of the b axis and klassengleiche symmetry reduction from Pbam to Pnma), caused by dislocation of the copper atoms (puckering effect). Geometrically, Sc5Cu2In4 is a 4:1 intergrowth structure of distorted AlB2 and CsCl related slabs.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149Münster, Germany, E-mail:

Award Identifier / Grant number: 501100001654

Acknowledgments

The research stay of NG in Münster was supported by the Deutscher Akademischer Austauschdienst.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by Deutscher Akademischer Austauschdienst.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Zaremba, V. I., Kalychak, Y. M., Zavalii, P. Y., Bruskov, V. A. Krystallografija 1991, 36, 1415.Suche in Google Scholar

2. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-10641-9Suche in Google Scholar

3. Solokha, P., De Negri, S., Saccone, A., Pavlyuk, V., Marciniak, B., Tedenac, J.-C. Acta Crystallogr. 2007, C63, i13. https://doi.org/10.1107/s0108270107001503.10.1107/S0108270107001503Suche in Google Scholar PubMed

4. Sojka, L., Demchyna, M., Belan, B., Manyako, M., Kalychak, Y. Intermetallics 2014, 49, 14. https://doi.org/10.1016/j.intermet.2014.01.003.10.1016/j.intermet.2014.01.003Suche in Google Scholar

5. Villars, P., Cenzual, K. Pearson’s crystal data: crystal structure database for inorganic compounds (release 2019/20), ASM International®: Materials Park, Ohio (USA), 2019. https://doi.org/10.5860/choice.45-3800.10.5860/CHOICE.45-3800Suche in Google Scholar

6. Lukachuk, M., Pöttgen, R. Z. Naturforsch. 2002, 57b, 1353. https://doi.org/10.1515/znb-2002-1203.10.1515/znb-2002-1203Suche in Google Scholar

7. Lukachuk, M., Hoffmann, R.-D., Pöttgen, R. Monatsh. Chem. 2005, 136, 127. https://doi.org/10.1007/s00706-004-0229-z.10.1007/s00706-004-0229-zSuche in Google Scholar

8. Lukachuk, M., Heying, B., Rodewald, U. C., Pöttgen, R. Heteroatom Chem. 2005, 16, 364. https://doi.org/10.1002/hc.20106.10.1002/hc.20106Suche in Google Scholar

9. Tursina, A. I., Kurenbaeva, Z. M., Shtepa, D. V., Nesterenko, S. N., Noël, H. Acta Crystallogr. 2006, E62, i80. https://doi.org/10.1107/s1600536806007264.10.1107/S1600536806007264Suche in Google Scholar

10. Zaremba, R., Rodewald, U. C., Pöttgen, R. Monatsh. Chem. 2007, 138, 819. https://doi.org/10.1007/s00706-007-0702-6.10.1007/s00706-007-0702-6Suche in Google Scholar

11. Soika, L. D., Daszkiewicz, M., Belan, B. D., Manyako, M. B., Davydov, V. M., Akselrud, L. G., Kalychak, Y. M. Ukr. Khim. Zh. 2008, 74, 90.Suche in Google Scholar

12. Tyvanchuk, Y. B., Rodewald, U. C., Kalychak, Y. M., Pöttgen, R. J. Solid State Chem. 2008, 181, 878. https://doi.org/10.1016/j.jssc.2008.01.035.10.1016/j.jssc.2008.01.035Suche in Google Scholar

13. Zaremba, R., Hermes, W., Eul, M., Pöttgen, R. Z. Naturforsch. 2008, 63b, 1447. https://doi.org/10.1515/znb-2008-1219.10.1515/znb-2008-1219Suche in Google Scholar

14. Tyvanchuk, Y. B., Baran, S., Duraj, R., Kalychak, Y. M., Przewoznik, J., Szytuła, A. J. Alloys Compd. 2014, 587, 573. https://doi.org/10.1016/j.jallcom.2013.10.084.10.1016/j.jallcom.2013.10.084Suche in Google Scholar

15. Szytuła, A., Baran, S., Kaczorowski, D., Sikora, W., Hoser, A. J. Alloys Compd. 2014, 617, 149.10.1016/j.jallcom.2014.07.190Suche in Google Scholar

16. Tyvanchuk, Y., Gulay, N., Bigun, I., Galadzhun, Y., Kalychak, Y. Z. Naturforsch. 2015, 70b, 283. https://doi.org/10.1515/znb-2014-0216.10.1515/znb-2014-0216Suche in Google Scholar

17. Gulay, N. L., Daszkiewicz, M., Tyvanchuk, Y. B., Kalychak, Y. M., Kaczorowski, D. J. Alloys Compd. 2018, 750, 92. https://doi.org/10.1016/j.jallcom.2018.03.360.10.1016/j.jallcom.2018.03.360Suche in Google Scholar

18. Tyvanchuk, Y. B., Penc, B., Szytuła, A., Zarzycki, A. Acta Phys. Polon. A 2010, 117, 599. https://doi.org/10.12693/aphyspola.117.599.10.12693/APhysPolA.117.599Suche in Google Scholar

19. Gondek, Ł., Przewoźnik, J., Czub, J., Tyvanchuk, Y., Szytuła, A., Arurlaj, A. Intermetallics 2012, 21, 10. https://doi.org/10.1016/j.intermet.2011.09.007.10.1016/j.intermet.2011.09.007Suche in Google Scholar

20. Provino, A., Mudryk, Y., Paudyal, D., Smetana, V., Manfrinetti, P. J. Appl. Phys. 2012, 111, 07E122.10.1063/1.3673432Suche in Google Scholar

21. Ritter, C., Provino, A., Manfrinetti, P., Pecharsky, V. K., Gschneidner, K. A.Jr., Dhar, S. K. J. Phys.: Condens. Matter 2015, 27, 476001. https://doi.org/10.1088/0953-8984/27/47/476001.10.1088/0953-8984/27/47/476001Suche in Google Scholar PubMed

22. Zhang, Z., Dong, X., Wang, Q., Li, L. Intermetallics 2018, 100, 136. https://doi.org/10.1016/j.intermet.2018.06.012.10.1016/j.intermet.2018.06.012Suche in Google Scholar

23. Gulay, N. L., Tyvanchuk, Y. B., Kalychak, Y. M., Kaczorowski, D. J. Alloys Compd. 2018, 731, 222. https://doi.org/10.1016/j.jallcom.2017.10.023.10.1016/j.jallcom.2017.10.023Suche in Google Scholar

24. Gulay, N., Tyvanchuk, Y., Daszkiewicz, M., Makhovych, B. S., Kalychak, Y. Z. Naturforsch. 2019, 74b, 289. https://doi.org/10.1515/znb-2018-0275.10.1515/znb-2018-0275Suche in Google Scholar

25. Gulay, N. L., Tyvanchuk, Y. B., Daszkiewicz, M., Kaczorowski, D., Kalychak, Y. M. J. Alloys Compd. 2020, 815, 152660. https://doi.org/10.1016/j.jallcom.2019.152660.10.1016/j.jallcom.2019.152660Suche in Google Scholar

26. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133.Suche in Google Scholar

27. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143. https://doi.org/10.1524/zkri.1999.214.3.143.10.1524/zkri.1999.214.3.143Suche in Google Scholar

28. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73. https://doi.org/10.1107/s0021889877012898.10.1107/S0021889877012898Suche in Google Scholar

29. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345.10.1515/zkri-2014-1737Suche in Google Scholar

30. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar

31. Palenzona, A., Manfrinetti, P., Palenzona, R. J. Alloys Compd. 1996, 243, 182. https://doi.org/10.1016/s0925-8388(96)02402-4.10.1016/S0925-8388(96)02402-4Suche in Google Scholar

32. Dwight, A. E., Downey, J. W., Conner, R. A.Jr. Acta Crystallogr. 1967, 22, 745. https://doi.org/10.1107/s0365110x6700146x.10.1107/S0365110X6700146XSuche in Google Scholar

33. Hulliger, F. J. Alloys Compd. 1996, 232, 160. https://doi.org/10.1016/0925-8388(95)01925-1.10.1016/0925-8388(95)01925-1Suche in Google Scholar

34. Pöttgen, R. Z. Naturforsch. 1994, 49b, 1309.10.1515/znb-1994-1001Suche in Google Scholar

35. Gravereau, P., Mirambet, F., Chevalier, B., Weill, F., Fournès, L., Laffargue, D., Bourée, F., Etourneau, J. J. Mater. Chem. 1994, 4, 1893. https://doi.org/10.1039/jm9940401893.10.1039/JM9940401893Suche in Google Scholar

36. Donohue, J. The Structures of the Elements; Wiley: New York (U.S.A.), 1974.Suche in Google Scholar

37. Lukachuk, M., Pöttgen, R. Z. Kristallogr. 2003, 218, 767. https://doi.org/10.1524/zkri.218.12.767.20545.10.1524/zkri.218.12.767.20545Suche in Google Scholar

38. Zumdick, M. F., Pöttgen, R. Z. Kristallogr. 1999, 214, 90. https://doi.org/10.1524/zkri.1999.214.2.90.10.1524/zkri.1999.214.2.90Suche in Google Scholar

39. Sebastian, C. P., Zhang, L., Fehse, C., Hoffmann, R.-D., Eckert, H., Pöttgen, R. Inorg. Chem. 2007, 46, 771. https://doi.org/10.1021/ic061691o.10.1021/ic061691oSuche in Google Scholar PubMed

Received: 2020-03-26
Accepted: 2020-06-17
Published Online: 2020-08-21
Published in Print: 2020-10-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2020-0032/html
Button zum nach oben scrollen