Startseite Crystal structure of the synthetic analogue of iwateite, Na2BaMn(PO4)2: an X-ray powder diffraction and Raman study
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Crystal structure of the synthetic analogue of iwateite, Na2BaMn(PO4)2: an X-ray powder diffraction and Raman study

  • Gwilherm Nénert EMAIL logo , M. Mangir Murshed , Teycir Ben Hamed , Thorsten M. Gesing und Mongi Ben Amara
Veröffentlicht/Copyright: 7. September 2020

Abstract

We have investigated the crystal structure of the synthetic analogue of the mineral iwateite using powder diffraction and Raman spectroscopy. Na2BaMn(PO4)2 crystallizes in the space group P3m1 (No. 164) with cell parameters a = 5.37292(1) Å, and c = 7.09538(1) Å (Rwp = 5.7%, V = 177.38 Å3, Z = 1). The space group assignment is supported by the experimentally observed 11 Raman active modes which agree with the expected number of modes for the P3m1 symmetry.


Corresponding author: Gwilherm Nénert, Malvern Panalytical B. V., Lelyweg 1, 7602 EA, Almelo, The Netherlands, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Nishio-Hamane, D., Minakawa, T., Okada, H. Iwateite, Na2BaMn(PO4)2, a new mineral from the Tanohata mine, Iwate Prefecture, Japan. J. Mineral. Petrol. Sci. 2014, 109, 34–37. https://doi.org/10.2465/jmps.131020a.Suche in Google Scholar

2. Okada, K., Ossaka, J. Structures of potassium sodium sulphate and tripotassium sodium disulphate. Acta Cryst. B 1980, 36, 919–921. https://doi.org/10.1107/s0567740880004852.Suche in Google Scholar

3. Berg, R. W., Boghosian, S., Bjerrum, N. J., Fehrmann, R., Krebs, B., Strater, N., Mortensen, O. S., Papatheodorou, G. N. Crystal structure and spectroscopic characterization of CsV(SO4)2. Evidence for an electronic Raman transition. Inorg. Chem. 1993, 32, 4714–4720. https://doi.org/10.1021/ic00074a012.Suche in Google Scholar

4. Murashko, M. N., Pekov, I. V., Krivovichev, S. V., Chernyatyeva, A. P., Yapaskurt, V. O., Zadov, A. E., Zelensky, M. E. Steklite, KAl(SO4)2: a finding at the Tolbachik Volcano, Kamchatka, Russia, validating its status as a mineral species and crystal structure. Geol. Ore Deposits 2013, 55, 594–600. https://doi.org/10.1134/s1075701513070088.Suche in Google Scholar

5. Boukhris, A., Hidouri, M., Glorieux, B., Ben Amara, M. Correlation between structure and photoluminescence of the europium doped glaserite-type phosphate Na2SrMg(PO4)2. Mater. Chem. Phys. 2012, 137, 26–33. https://doi.org/10.1016/j.matchemphys.2012.07.002.Suche in Google Scholar

6. Boukhris, A., Hidouri, M., Glorieux, B., Ben Amara, M. Na2BaMg(PO4)2: synthesis, crystal structure and europium photoluminescence properties. J. Rare Earths 2013, 31, 849–856. https://doi.org/10.1016/s1002-0721(12)60369-x.Suche in Google Scholar

7. Lu, J., Du, F., Zhu, R., Huang, Y., Jin Seo, H. Phase formations and tunable red luminescence of Na2CaMg1−xMnx(PO4)2 (x = 0.05–1.0). J. Mater. Chem. 2011, 21, 16398–16405. https://doi.org/10.1039/c1jm12854j.Suche in Google Scholar

8. Yonesaki, Y., Matsuda, C. Crystal structure of Na2MMgP2O8 (M: Ba,Sr,Ca) orthophosphates and their luminescence properties activated by Eu2+; analogous structural behaviors of glaserite-type phosphates and silicates. J. Solid State Chem. 2011, 184, 3247–3252. https://doi.org/10.1016/j.jssc.2011.10.011.Suche in Google Scholar

9. Yonesaki, Y., Matsuda, C., Dong, Q. Structural consideration on the emission properties of Eu2+-doped Li2BaMgP2O8 and Na2BaMgP2O8 orthophosphates. J. Solid State Chem. 2012, 196, 404–408. https://doi.org/10.1016/j.jssc.2012.07.001.Suche in Google Scholar

10. Zhou, J., Xia, Z. Synthesis, luminescence properties and energy transfer behavior of Na2CaMg(PO4)2:Eu2+, Mn2+ phosphors. J. Lumin. 2014, 146, 22–26. https://doi.org/10.1016/j.jlumin.2013.09.031.Suche in Google Scholar

11. Fuchs, L. H., Olsen, E., Henderson, E. P. On the occurrence of brianite and panethite, two new phosphate minerals from the Dayton meteorite. Geochim. Cosmochim. Acta 1967, 31, 1711–1719. https://doi.org/10.1016/0016-7037(67)90118-4.Suche in Google Scholar

12. Moore, P. B. Brianite, Na2CaMg(PO4)2: a phosphate analog of Merwinite, Ca2CaMg(SiO4)2. Am. Mineral. 1975, 60, 717–718.Suche in Google Scholar

13. Degen, T., Sadki, M., Bron, E., König, U., Nénert, G. The HighScore suite. Powder Diffract. 2014, 29, S13–S18. https://doi.org/10.1017/s0885715614000840.Suche in Google Scholar

14. Dollase, W. A. Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J. Appl. Cryst. 1986, 19, 267–272. https://doi.org/10.1107/s0021889886089458.Suche in Google Scholar

15. March, A. Mathematische Theorie der Regelung nach der Korngestah bei affiner Deformation. Z. Kristallogr. 1932, 81, 285–297. https://doi.org/10.1524/zkri.1932.81.1.285.Suche in Google Scholar

16. Momma, K., Izumi, F. VESTA 3 for three‐dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. https://doi.org/10.1107/s0021889811038970.Suche in Google Scholar

17. Nespolo, M, Guillot, B. CHARDI2015: charge distribution analysis of non-molecular structures. J. Appl. Cryst. 2016, 49, 317–321. https://doi.org/10.1107/s1600576715024814.Suche in Google Scholar

18. Nespolo, M. Charge distribution as a tool to investigate structural details. IV. A new route to heteroligand polyhedra. Acta Cryst. B 2016, 72, 51–66. https://doi.org/10.1107/s2052520615019472.Suche in Google Scholar

19. Park, C.-H., Kim, T.-H., Yonesaki, Y., Kumada, N. A re-investigation of the crystal structure and luminescence of BaCa2MgSi2O8:Eu2+. J. Solid State Chem. 2011, 184, 1566–1570. https://doi.org/10.1016/j.jssc.2011.04.030.Suche in Google Scholar

20. Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., Wondratschek, H. Bilbao crystallographic server: useful databases and tools for phase-transition studies. Phase Trans. Multinational J. 2003, 76, 155–170. https://doi.org/10.1080/0141159031000076110.Suche in Google Scholar

21. Henderson, G. S., Neuville, D. R., Downs, R. T. Reviews in mineralogy and geochemistry. In Spectroscopic methods in mineralogy and materials sciences, Vol. 78, 2014.10.1515/9781501510618Suche in Google Scholar

22. Litasov, K. D., Podgornykh, N. M. Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite. J. Raman Spectrosc. 2017, 48, 1518–1527. https://doi.org/10.1002/jrs.5119.Suche in Google Scholar

Received: 2020-02-12
Accepted: 2020-06-24
Published Online: 2020-09-07
Published in Print: 2020-10-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2020-0028/html
Button zum nach oben scrollen