Startseite Wirtschaftswissenschaften Sequential Monte Carlo with model tempering
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sequential Monte Carlo with model tempering

  • Marko Mlikota EMAIL logo und Frank Schorfheide ORCID logo EMAIL logo
Veröffentlicht/Copyright: 8. Mai 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Modern macroeconometrics often relies on time series models for which it is time-consuming to evaluate the likelihood function. We demonstrate how Bayesian computations for such models can be drastically accelerated by reweighting and mutating posterior draws from an approximating model that allows for fast likelihood evaluations, into posterior draws from the model of interest, using a sequential Monte Carlo (SMC) algorithm. We apply the technique to the estimation of a vector autoregression with stochastic volatility and two nonlinear dynamic stochastic general equilibrium models. The runtime reductions we obtain range from 27 % to 88 %.


Corresponding authors: Marko Mlikota and Frank Schorfheide, Department of Economics, University of Pennsylvania, Philadelphia, USA, E-mail: (M. Mlikota), (F. Schorfheide) (F. Schorfheide)

Award Identifier / Grant number: SES 1851634

Acknowledgement

We thank Marco Del Negro, David Childers, and seminar and conference participants at Penn, the 2021 Conference of Swiss Economists Abroad, the 2022 Barcelona GSE Summer Forum, the 2022 Annual Conference of the IAAE in London, the 2022 ESOBE Meetings in Salzburg, and the 2022 FRB Philadelphia Conference on Frontiers in Machine Learning and Economics for helpful comments and discussions.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Schorfheide gratefully acknowledges financial support from the National Science Foundation under Grant SES 1851634.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Acharya, S., W. Chen, M. Del Negro, K. Dogra, E. Matlin, and R. Sarfati. 2021. “Estimating HANK: Macro Time Series and Micro Moments.” In Working Paper. Federal Reserve Bank of New York.Suche in Google Scholar

Aruoba, B., L. Bocola, and F. Schorfheide. 2017. “Assessing DSGE Model Nonlinearities.” Journal of Economic Dynamics and Control 83: 34–54. https://doi.org/10.1016/j.jedc.2017.07.006.Suche in Google Scholar

Aruoba, B., M. Mlikota, F. Schorfheide, and S. Villalvazo. 2022. “SVARs with Occasionally-Binding Constraints.” Journal of Econometrics. forthcoming. https://doi.org/10.1016/j.jeconom.2021.07.013.Suche in Google Scholar

Bon, J. J., A. Lee, and C. Drovandi. 2021. “Accelerating Sequential Monte Carlo with Surrogate Likelihoods.” Statistics and Computing 31: 1–26. https://doi.org/10.1007/s11222-021-10036-4.Suche in Google Scholar

Cai, M., M. Del Negro, E. Herbst, E. Matlin, R. Sarfati, and F. Schorfheide. 2021. “Online Estimation of DSGE Models.” The Econometrics Journal 24: C33–58. https://doi.org/10.1093/ectj/utaa029.Suche in Google Scholar

Chopin, N. 2002. “A Sequential Particle Filter for Static Models.” Biometrika 89: 539–51. https://doi.org/10.1093/biomet/89.3.539.Suche in Google Scholar

Chopin, N., P. E. Jacob, and O. Papaspiliopoulos. 2013. “SMC2: An Efficient Algorithm for Sequential Analysis of State Space Models.” Journal of the Royal Statistical Society: Series B 75: 397–426. https://doi.org/10.1111/j.1467-9868.2012.01046.x.Suche in Google Scholar

Christen, A. J., and C. Fox. 2005. “Markov Chain Monte Carlo Using an Approximation.” Journal of Computational & Graphical Statistics 14: 795–810. https://doi.org/10.1198/106186005x76983.Suche in Google Scholar

Creal, D. 2007. Sequential Monte Carlo Samplers for Bayesian DSGE Models.Notre Dame. Notre Dame: University of Notre Dame.Suche in Google Scholar

Dai, C., J. Heng, P. E. Jacob, and N. Whiteley. 2022. “An Invitation to Sequential Monte Carlo Samplers.” Journal of the American Statistical Association 117: 1587–600. https://doi.org/10.1080/01621459.2022.2087659.Suche in Google Scholar

Del Moral, P., A. Doucet, and A. Jasra. 2012. “An Adaptive Sequential Monte Carlo Method for Approximate Bayesian Computation.” Statistical Computing 22: 1009–20. https://doi.org/10.1007/s11222-011-9271-y.Suche in Google Scholar

Doppelt, R., and K. O’Hara. 2020. “Bayesian Estimation of Fractionally Integrated Vector Autoregressions and an Application to Identified Technology Shocks.” In Working Paper. Penn State University.Suche in Google Scholar

Durham, G., and J. Geweke. 2014. “Adaptive Sequential Posterior Simulators for Massively Parallel Computing Environments.” In Advances in Econometrics, Vol. 34, edited by I. Jeliazkov, and D. Poirier, 1–44. West Yorkshire: Emerald Group Publishing Limited. chap. 6.10.1108/S0731-905320140000034003Suche in Google Scholar

Geweke, J. 1989. “Bayesian Inference in Econometrics Models Using Monte Carlo Integration.” Econometrica 57: 1317–39. https://doi.org/10.2307/1913710.Suche in Google Scholar

Geweke, J. 2014. Exact Optimization by Means of Sequentially Adaptive Bayesian Learning. Seattle: University of Iowa. Manuscript.Suche in Google Scholar

Gordon, N., D. Salmond, and A. F. Smith. 1993. “Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation.” Radar and Signal Processing, IEE Proceedings F 140: 107–13. https://doi.org/10.1049/ip-f-2.1993.0015.Suche in Google Scholar

Herbst, E., and F. Schorfheide. 2014. “Sequential Monte Carlo Sampling for DSGE Models.” Journal of Applied Econometrics 29: 1073–98. https://doi.org/10.1002/jae.2397.Suche in Google Scholar

Herbst, E., and F. Schorfheide. 2015. Bayesian Estimation of DSGE Models. Princeton: Princeton University Press.10.23943/princeton/9780691161082.001.0001Suche in Google Scholar

Herbst, E., and F. Schorfheide. 2019. “Tempered Particle Filtering.” Journal of Econometrics 210: 26–44. https://doi.org/10.1016/j.jeconom.2018.11.003.Suche in Google Scholar

Hoogerheide, L., A. Opschoor, and H. van Dijk. 2012. “A Class of Adaptive Importance Sampling Weighted EM Algorithms for Efficient and Robust Posterior and Predictive Simulation.” Journal of Econometrics 171: 101–20. https://doi.org/10.1016/j.jeconom.2012.06.011.Suche in Google Scholar

Jasra, A., D. A. Stephens, A. Doucet, and T. Tsagaris. 2011. “Inference for Levy-Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo.” Scandinavian Journal of Statistics 38: 1–22. https://doi.org/10.1111/j.1467-9469.2010.00723.x.Suche in Google Scholar

Kim, S., N. Shephard, and S. Chib. 1998. “Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models.” The Review of Economic Studies 65: 361–93. https://doi.org/10.1111/1467-937x.00050.Suche in Google Scholar

Kloek, T., and H. K. van Dijk. 1978. “Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo.” Econometrica 46: 1–19. https://doi.org/10.2307/1913641.Suche in Google Scholar

Liu, J. S. 2001. Monte Carlo Strategies in Scientific Computing. New York: Springer.Suche in Google Scholar

Mathews, J., and S. C. Schmidler. 2022. “Finite Sample Complexity of Sequential Mote Carlo Estimators on Multimodal Target Distributions.” arXiv Working Paper 2208.06672.Suche in Google Scholar

Schäfer, C., and N. Chopin. 2013. “Sequential Monte Carlo on Large Binary Sampling Spaces.” Statistical Computing 23: 163–84. https://doi.org/10.1007/s11222-011-9299-z.Suche in Google Scholar

Smets, F., and R. Wouters. 2007. “Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach.” The American Economic Review 97: 586–606. https://doi.org/10.1257/aer.97.3.586.Suche in Google Scholar

Smith, M. 2011. “Estimating Nonlinear Economics Models Using Surrogate Transitions.” In Working Paper. Federal Reserve Board.Suche in Google Scholar

Zhou, Y., A. M. Johansen, and J. A. Aston. 2015. “Towards Automatic Model Comparison: An Adaptive Sequential Monte Carlo Approach.” arXiv Working Paper, 1303.3123v2.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/snde-2022-0103).


Received: 2022-11-15
Accepted: 2023-04-09
Published Online: 2023-05-08

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/snde-2022-0103/html
Button zum nach oben scrollen