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Online Appendix: Sequential Monte Carlo with Model Tempering
Marko Mlikota and Frank Schorfheide

This Appendix consists of the following sections:
A. Computational Details

B. TIlustration 2: VAR with Stochastic Volatility
C. Tlustration 3: A Nonlinear DSGE Model

A Computational Details

The presentations of the mutation algorithm in Section A.1 and the BSPF in in Section A.2 are based on
Herbst and Schorfheide (2015).

A.1 SMC Particle Mutation

Algorithm 2 (Particle Mutation).

In Step 2(c) in iteration n of Algorithm 1:

1. Compute an importance sampling approzimation %, of V., [0] based on the particles {67, Wfl}f\il

2. Compute the average empirical rejection rate Rn,l(fn,l), based on the Mutation step in iteration n — 1.
The average is computed across the Npjoers blocks.

3. Let ¢, = c* and for n > 2 adjust the scaling factor according to

én = én—lf(l - Rn—l(én—l))7

where

£16(x—0.25)

Define (, = [én,vech(in)’}/.
5. For each particle i, run Nprg steps of a Random Walk Metropolis-Hastings Algorithm using the proposal
density

9o~ N[ ghm—1 825 ). Al
n |€ n e n

A.2 (Particle) Filtering

We use a bootstrap particle filter (BSPF) to approximate the likelihood function in the model with stochastic
volatility. In the description of the filter we denote the latent state by s;.

Algorithm 3 (Bootstrap Particle Filter).

1. Imitialization. Draw the initial particles from the distribution s} i p(s0l0) and set Wi =1, j =
1,...,M.

2. Recursion. Fort=1,...,T:
(a) Forecasting s;. Draw §, from the state-transition density p(3¢|s]_,,0).
(b) Forecasting y;. Define the incremental weights

wg :p(yt|‘§{7ylit*179) (AQ)

The predictive density p(y:|Y1:1—1,0) can be approzimated by

M

R 1 o

Pyt Y1:0-1,0) = i E 1 ] Wy_. (A.3)
iz
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(¢) Define the normalized weights

W /MZ Wi, (A.4)

(d) Selection. Resample the particles, for instance, via multinomial resampling. Let {sg}fil de-
note M itd draws from a multinomial distribution characterized by support points and weights
{ég,W "\ and set WJ =1 forj =1...,M. An approzimation of E[h(s;)|Y1.t,0] is given by
htM*MZ] 1 St)W]

3. Likelihood Approximation. The approzimation of the log-likelihood function is given by

M
1 o
Inp(Y1.7|0) = E In ME Wi, |. (A.5)
=1

B lllustration 2: A VAR with Stochastic Volatility
B.1 Prior Specification

Prior for (@1, P5,). We use a Minnesota-type prior for the reduced-form VAR, coefficients that appear in
the homoskedastic version of the VAR in (21). The specification of the Minnesota prior follows Del Negro
and Schorfheide (2012). The prior is indexed by hyperparameters A1, A2, and Az, and is implemented
through dummy observations stacked into (Y*, X*). We use three sets of dummy observations, written as
Y =X;®+U;:

As; 0 _ (M 00 oy U 2
0  Aisy 0 Aisy O uz1  ua|
Uil U112
A A = |\ A Ao| @+ ,
[ 2¥1 2.'\12} [ 2Y1 2¥o 2} L@l U22:|
§1 0 _ 0 0 O CI>+ uil U2 ’
0 sy 0 0 O U1 U22

where y; and s; are the mean and standard deviation of y;. The first set of dummy observations implies
that the VAR coefficients are centered at univariate unit-root representations. The second set of dummy
observations implies that if the lagged value y;—1 take the value y, then the current value y; will be close to
y- The third set of dummy observations induces a prior for the covariance matrix of u; and is repeated A3
times. The dummy observations induce a conjugate MNIW prior for (®,X):

Y~ IW(S,v), ®EX~MNpLeP ),

with
v=T"-k, S=8, p=9", P=X"X",

where ®* = (X*' X*)71X*'V* and S* = (Y* — X*®*)(Y* — X*®*). Weset \; =1, \g = 1, and A3 = 3.
Prior for p;. The prior for each p; is Uniform on [0, 1].

Prior for &;. The prior of &; is specified as an inverse Gamma distribution. It is parameterized as scaled
inverse x? distribution with density p(¢€2|s2,v) oc (€2)7%/21 exp[—vs?/(2€2)], where V/s2 is 0.3 and v is
2.0. The density of &; is obtained by the change of variables £ = \/fi2 .
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B.2 Further Results for the VAR-SV

Fig. A-1: VAR-SV: Target and Approximate Posterior Densities for DGP 1

Notes: Each plot refers to a different parameter. The approximating posterior densities obtained from the tempered My
likelihood function for . € {0.0,0.2,0.4,0.6,0.8,1.0} are plotted in shades (the larger 1. the darker) of gray. The M;
posterior is depicted in blue. The stochastic volatility parameters p;,&;, ¢ = 1,2 are not displayed because model My is
uninformative for them.
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Fig. A-2: VAR-SV: Target and Approximate Posterior Densities for DGP 2

Notes: Each plot refers to a different parameter. The approximating posterior densities obtained from the tempered My
likelihood function for . € {0.0,0.2,0.4,0.6,0.8,1.0} are plotted in shades (the larger 1. the darker) of gray. The M,
posterior is depicted in blue. The stochastic volatility parameters p;,&;, ¢ = 1,2 are not displayed because model My is
uninformative for them.
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Fig. A-3: VAR-SV: Target and Approximate Posterior Densities for DGP 3
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Notes: Each plot refers to a different parameter. The approximating posterior densities obtained from the tempered My
likelihood function for . € {0.0,0.2,0.4,0.6,0.8,1.0} are plotted in shades (the larger 1. the darker) of gray. The M;
posterior is depicted in blue. The stochastic volatility parameters p;,&;, ¢ = 1,2 are not displayed because model My is

uninformative for them.
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Fig. A-4: VAR-SV: Monte Carlo Approximations of Posterior Statistics for DGP 1
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Notes: Each panel shows the Monte Carlo approximation of the respective posterior statistic as a function of the
tempering parameter . for the approximating model. Depicted are means across Ny, = 200 runs.
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Fig. A-5: VAR-SV: Runtime and Tempering Schedule
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Notes: The left panel shows the mean runtime and 90% confidence interval across Ny, = 200 runs. The right panel
illustrates the evolution of the tempering schedule by plotting the median value of the tempering parameter at each
stage n.
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C Hlustration 3: A Nonlinear DSGE Model

C.1 Equilibrium Conditions, Steady State, and Log-linearization

We write the social planner’s problem stated in the main text as

V(K,S) = Crge)m;((, u(B,C, L)+ fEg 5[V (K', 5"
st. C+I+K®K'/K)=Y, (A.6)
Y =f(Z,K,L), (A7)
I=K —(1-0)K. (A.8)

We use the following functional forms:

Cl—T -1 L1+1/u

wB,G.L) = —— 7Bl+1/u7

f(Z,K,L) = ZK“L'7®,

(I’(K//K) _ d)l (exp(_¢2(Kl/K_ 1)) +¢2(KI/K_ 1) — 1>
3 '

The exogenous processes evolve according to:

2 sl 5 !
Z =Ze*, 2 =p2+0,e,,

B = B*eB, V= p,,z3+a,,sg .

Throughout this section we use f;(-) to denote the derivative of a function f(-) with respect to its i’th
argument.

C.1.1 First-Order Conditions (FOCs)

Substitute (A.7) and (A.8) into (A.6) and then take FOCs with respect to L and K’. The FOC for L takes
the form
uz(B,C, L) f3(Z, K, L) +us(B,C,L) = 0.

Using the functional forms, this leads to

= BCTLYY. (A.9)

(1-a)r

Now write
C=ZK“L'" - K'+(1-§)K - K®(K'/K).
The FOC for K’ takes the form:
—uz(B,C,L)[1+ ®1(K'/K)| + BE [Vi(K',5")] = 0.

Plugging in the expressions for ua(-) and Vi (-) we obtain

CTT[1+901(K'/K)] (A.10)
— BE [C’—T (a;:, +1-6-B(K"/K') + qnl(K”/K’)}[((/ll)] ,
where
By(z) = P11~ exp{ e — 1)}]. (A11)

®2
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C.1.2 Steady State

Rather than taking (Z,, Bx) as given and solving for (Y, L) and the remaining steady states, we proceed
in the other direction and solve for (Z,, B,) as a function of (Yi, L,). Notice that the adjustment costs are
zero in steady state because ®(1) = 0. Moreover, ®1(1) = 0. We deduce from (A.10) that

Y.
- = 1-9
which implies that
e

K,=———Y,. A2
751 0) (412

The capital accumulation equation implies that

ad

I, =0Ky,= —F+—=Y,. A3
/8- (1-9) (419)

The aggregate resource constraint implies that
C, =Y, I—<1 M)Y (A.14)

* * * 1/6 — (1 — (5) * . .

The production function can be solved for Z,:

Y. (1B—(1=-0)\" (Y.
e (5 ()

Finally, we solve (A.9) for B to obtain Bi:

Y, _
B.=(1-0a)7-C."L Vv,

*

In the numerical illustration we set Y, = L, = 1.

C.1.3 Log-Linearization

g = %Hf/—z (A.16)
§ = 2+ak+(1-0a)l (A.17)
o o= K —Q1-06k (A.18)
1+1/v) = §—b—re (A.19)

We proceed with the log-linearization of ®1(z) in (A.11). Differentiating with respect to the argument
yields
®11(x) = ¢1 exp{—¢2(z — 1)}.

Log-linearizing around x = exp(z) = 1 leads to the approximation:
Py (exp(z)) = 1(1) + @11(1) - 1- (2 - 0).

In turn, we can write
O (K'/K) ~ ¢1(K' — k),

which shows that the linex adjustment cost function is equivalent, up to second order, to a quadratic
adjustment cost function

¢1

O(K'/K) ~ L (K /K — 1)%.
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We now turn to the log-linearization of (A.10) using the observation that ®;(1) = 0:

—7C e+ CIT (K — k)

— 1BCT(aY. Ky 41— B[] + aBCCT ; [y — '] + 61 8CE[R — ).

Multiplying by CT, using (A.12), and noting that i is in the information for the conditional expectation

E[-] yields the simplified equation:
—re+ ¢ (k' — k) = —7E[] + (1 - B(1 - 0)) (E[g] — &) + o1 B(E[K"] — ). (A.20)
Equations (A.16) to (A.20) and the laws of motion for 2 and b form a linear rational expectations system
that determines the dynamics of the model.
After setting Y, = L, = 1, the measurement equations in (25) can be written as

ad

InY? =y mnl°=In|——F7———
n gy+mny, In n(l/ﬁ(lé)

) +%+77], lnLO:Z+nl. (A.21)

C.2 Model Solution, and Computational Details
While the approximate model My refers to a first-order linearization around the steady state and is described
in Section C.1 above, we obtain M; as a second-order linearization around the steady state, computed

following Schmitt-Grohé and Uribe (2004). To implement it in Julia, we use the package Solve DSGE,
developed by Richard Dennis and available at https://github.com/RJDennis.

C.3 Further Results for the RBC Model

Fig. A-6: RBC Model: Simulated Data
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Fig. A-7: RBC Model: Target and Approximate Posterior Densities
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Notes: Each plot refers to a different parameter. The approximating posterior densities obtained from the tempered My
likelihood function for . € {0.0,0.2,0.4,0.6,0.8,1.0} are plotted in shades (the larger 1. the darker) of gray. The M;

posterior is depicted in blue.

Fig. A-8: RBC Model: Absolute Runtimes
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Notes: Absolute runtime as a function of 1, based on a single run (Nyyn = 1).



