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Online Appendix: Sequential Monte Carlo with Model Tempering
Marko Mlikota and Frank Schorfheide

This Appendix consists of the following sections:
A. Computational Details
B. Illustration 2: VAR with Stochastic Volatility
C. Illustration 3: A Nonlinear DSGE Model

A Computational Details
The presentations of the mutation algorithm in Section A.1 and the BSPF in in Section A.2 are based on
Herbst and Schorfheide (2015).

A.1 SMC Particle Mutation

Algorithm 2 (Particle Mutation).
In Step 2(c) in iteration 𝑛 of Algorithm 1:
1. Compute an importance sampling approximation Σ̃𝑛 of V𝜋𝑛 [𝜃] based on the particles {𝜃𝑖𝑛−1, 𝑊̃

𝑖
𝑛}𝑁𝑖=1.

2. Compute the average empirical rejection rate 𝑅̂𝑛−1(𝜁𝑛−1), based on the Mutation step in iteration 𝑛− 1.
The average is computed across the 𝑁𝑏𝑙𝑜𝑐𝑘𝑠 blocks.

3. Let 𝑐1 = 𝑐* and for 𝑛 > 2 adjust the scaling factor according to

𝑐𝑛 = 𝑐𝑛−1𝑓
(︀
1 − 𝑅̂𝑛−1(𝜁𝑛−1)

)︀
,

where
𝑓(𝑥) = 0.95 + 0.10 𝑒16(𝑥−0.25)

1 + 𝑒16(𝑥−0.25) .

4. Define 𝜁𝑛 =
[︀
𝑐𝑛, 𝑣𝑒𝑐ℎ(Σ̃𝑛)′]︀′.

5. For each particle 𝑖, run 𝑁𝑀𝐻 steps of a Random Walk Metropolis-Hastings Algorithm using the proposal
density

𝜗𝑖,𝑚𝑛 |𝜁𝑛 ∼ 𝑁

(︂
𝜃𝑖,𝑚−1
𝑛 , 𝑐2

𝑛Σ̃𝑛
)︂
. (A.1)

A.2 (Particle) Filtering

We use a bootstrap particle filter (BSPF) to approximate the likelihood function in the model with stochastic
volatility. In the description of the filter we denote the latent state by 𝑠𝑡.

Algorithm 3 (Bootstrap Particle Filter).
1. Initialization. Draw the initial particles from the distribution 𝑠𝑗0

𝑖𝑖𝑑∼ 𝑝(𝑠0|𝜃) and set 𝑊 𝑗
0 = 1, 𝑗 =

1, . . . ,𝑀 .
2. Recursion. For 𝑡 = 1, . . . , 𝑇 :

(a) Forecasting 𝑠𝑡. Draw 𝑠𝑗𝑡 from the state-transition density 𝑝(𝑠𝑡|𝑠𝑗𝑡−1, 𝜃).
(b) Forecasting 𝑦𝑡. Define the incremental weights

𝑤̃𝑗𝑡 = 𝑝(𝑦𝑡|𝑠𝑗𝑡 , 𝑌1:𝑡−1, 𝜃) (A.2)

The predictive density 𝑝(𝑦𝑡|𝑌1:𝑡−1, 𝜃) can be approximated by

𝑝(𝑦𝑡|𝑌1:𝑡−1, 𝜃) = 1
𝑀

𝑀∑︁
𝑗=1

𝑤̃𝑗𝑡𝑊
𝑗
𝑡−1. (A.3)
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(c) Define the normalized weights

𝑊̃ 𝑗
𝑡 = 𝑤̃𝑗𝑡𝑊

𝑗
𝑡−1

⧸︂
1
𝑀

𝑀∑︁
𝑗=1

𝑤̃𝑗𝑡𝑊
𝑗
𝑡−1. (A.4)

(d) Selection. Resample the particles, for instance, via multinomial resampling. Let {𝑠𝑗𝑡}𝑀𝑗=1 de-
note 𝑀 iid draws from a multinomial distribution characterized by support points and weights
{𝑠𝑗𝑡 , 𝑊̃

𝑗
𝑡 } and set 𝑊 𝑗

𝑡 = 1 for 𝑗 =, 1 . . . ,𝑀 . An approximation of E[ℎ(𝑠𝑡)|𝑌1:𝑡, 𝜃] is given by
ℎ̄𝑡,𝑀 = 1

𝑀

∑︀𝑀
𝑗=1 ℎ(𝑠𝑗𝑡 )𝑊

𝑗
𝑡 .

3. Likelihood Approximation. The approximation of the log-likelihood function is given by

ln 𝑝(𝑌1:𝑇 |𝜃) =
𝑇∑︁
𝑡=1

ln

⎛⎝ 1
𝑀

𝑀∑︁
𝑗=1

𝑤̃𝑗𝑡𝑊
𝑗
𝑡−1

⎞⎠ . (A.5)

B Illustration 2: A VAR with Stochastic Volatility

B.1 Prior Specification

Prior for (Φ1,Φ2,Σ). We use a Minnesota-type prior for the reduced-form VAR coefficients that appear in
the homoskedastic version of the VAR in (21). The specification of the Minnesota prior follows Del Negro
and Schorfheide (2012). The prior is indexed by hyperparameters 𝜆1, 𝜆2, and 𝜆3, and is implemented
through dummy observations stacked into (𝑌 *, 𝑋*). We use three sets of dummy observations, written as
𝑌 *
𝑗 = 𝑋*

𝑗 Φ + 𝑈𝑗 : [︂
𝜆1s1 0

0 𝜆1s2

]︂
=

[︂
𝜆1s1 0 0

0 𝜆1s2 0

]︂
Φ +

[︂
𝑢11 𝑢12
𝑢21 𝑢22

]︂
,

[︀
𝜆2y1 𝜆2y2

]︀
=

[︀
𝜆2y1 𝜆2y2 𝜆2

]︀
Φ +

[︂
𝑢11 𝑢12
𝑢21 𝑢22

]︂
,[︂

s1 0
0 s2

]︂
=

[︂
0 0 0
0 0 0

]︂
Φ +

[︂
𝑢11 𝑢12
𝑢21 𝑢22

]︂
,

where y𝑖 and s𝑖 are the mean and standard deviation of 𝑦𝑖. The first set of dummy observations implies
that the VAR coefficients are centered at univariate unit-root representations. The second set of dummy
observations implies that if the lagged value 𝑦𝑡−1 take the value 𝑦, then the current value 𝑦𝑡 will be close to
𝑦. The third set of dummy observations induces a prior for the covariance matrix of 𝑢𝑡 and is repeated 𝜆3
times. The dummy observations induce a conjugate MNIW prior for (Φ,Σ):

Σ ∼ 𝐼𝑊 (𝑆, 𝜈) , Φ|Σ ∼ 𝑀𝑁(𝜇,Σ ⊗ 𝑃−1) ,

with
𝜈 = 𝑇 * − 𝑘 , 𝑆 = 𝑆* , 𝜇 = Φ* , 𝑃 = 𝑋*′𝑋* ,

where Φ* = (𝑋*′𝑋*)−1𝑋*′𝑌 * and 𝑆* = (𝑌 * −𝑋*Φ*)′(𝑌 * −𝑋*Φ*). We set 𝜆1 = 1, 𝜆2 = 1, and 𝜆3 = 3.
Prior for 𝜌𝑖. The prior for each 𝜌𝑖 is Uniform on [0, 1].
Prior for 𝜉𝑖. The prior of 𝜉𝑖 is specified as an inverse Gamma distribution. It is parameterized as scaled
inverse 𝜒2 distribution with density 𝑝(𝜉2|𝑠2, 𝜈) ∝ (𝜉2)−𝜈/2−1 exp[−𝜈𝑠2/(2𝜉2)], where

√
𝑠2 is 0.3 and 𝜈 is

2.0. The density of 𝜉𝑖 is obtained by the change of variables 𝜉 =
√︀
𝜉2.
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B.2 Further Results for the VAR-SV

Fig. A-1: VAR-SV: Target and Approximate Posterior Densities for DGP 1

Notes: Each plot refers to a different parameter. The approximating posterior densities obtained from the tempered 𝑀0

likelihood function for 𝜓* ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} are plotted in shades (the larger 𝜓* the darker) of gray. The 𝑀1

posterior is depicted in blue. The stochastic volatility parameters 𝜌𝑖, 𝜉𝑖, 𝑖 = 1, 2 are not displayed because model 𝑀0 is
uninformative for them.
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Fig. A-2: VAR-SV: Target and Approximate Posterior Densities for DGP 2

Notes: Each plot refers to a different parameter. The approximating posterior densities obtained from the tempered 𝑀0

likelihood function for 𝜓* ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} are plotted in shades (the larger 𝜓* the darker) of gray. The 𝑀1

posterior is depicted in blue. The stochastic volatility parameters 𝜌𝑖, 𝜉𝑖, 𝑖 = 1, 2 are not displayed because model 𝑀0 is
uninformative for them.
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Fig. A-3: VAR-SV: Target and Approximate Posterior Densities for DGP 3

Notes: Each plot refers to a different parameter. The approximating posterior densities obtained from the tempered 𝑀0

likelihood function for 𝜓* ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} are plotted in shades (the larger 𝜓* the darker) of gray. The 𝑀1

posterior is depicted in blue. The stochastic volatility parameters 𝜌𝑖, 𝜉𝑖, 𝑖 = 1, 2 are not displayed because model 𝑀0 is
uninformative for them.
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Fig. A-4: VAR-SV: Monte Carlo Approximations of Posterior Statistics for DGP 1

Notes: Each panel shows the Monte Carlo approximation of the respective posterior statistic as a function of the
tempering parameter 𝜓* for the approximating model. Depicted are means across 𝑁𝑟𝑢𝑛 = 200 runs.
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Fig. A-5: VAR-SV: Runtime and Tempering Schedule
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Notes: The left panel shows the mean runtime and 90% confidence interval across 𝑁𝑟𝑢𝑛 = 200 runs. The right panel
illustrates the evolution of the tempering schedule by plotting the median value of the tempering parameter at each
stage 𝑛.
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C Illustration 3: A Nonlinear DSGE Model

C.1 Equilibrium Conditions, Steady State, and Log-linearization

We write the social planner’s problem stated in the main text as

𝑉 (𝐾,𝑆) = max
𝐶,𝐿,𝐾′

𝑢(𝐵,𝐶,𝐿) + 𝛽E𝑆′|𝑆 [𝑉 (𝐾′, 𝑆′)]

s.t. 𝐶 + 𝐼 +𝐾Φ(𝐾′/𝐾) = 𝑌, (A.6)
𝑌 = 𝑓(𝑍,𝐾,𝐿), (A.7)
𝐼 = 𝐾′ − (1 − 𝛿)𝐾 . (A.8)

We use the following functional forms:

𝑢(𝐵,𝐶,𝐿) = 𝐶1−𝜏 − 1
1 − 𝜏

−𝐵
𝐿1+1/𝜈

1 + 1/𝜈 ,

𝑓(𝑍,𝐾,𝐿) = 𝑍𝐾𝛼𝐿1−𝛼,

Φ(𝐾′/𝐾) = 𝜑1

(︂
exp(−𝜑2(𝐾′/𝐾 − 1)) + 𝜑2(𝐾′/𝐾 − 1) − 1

𝜑2
2

)︂
.

The exogenous processes evolve according to:

𝑍 = 𝑍*𝑒
𝑧, 𝑧′ = 𝜌𝑧𝑧 + 𝜎𝑧𝜀

′
𝑧,

𝐵 = 𝐵*𝑒
𝑏̂, 𝑏̂′ = 𝜌𝑏𝑏̂+ 𝜎𝑏𝜀

′
𝑏 .

Throughout this section we use 𝑓𝑖(·) to denote the derivative of a function 𝑓(·) with respect to its 𝑖’th
argument.

C.1.1 First-Order Conditions (FOCs)

Substitute (A.7) and (A.8) into (A.6) and then take FOCs with respect to 𝐿 and 𝐾′. The FOC for 𝐿 takes
the form

𝑢2(𝐵,𝐶,𝐿)𝑓3(𝑍,𝐾,𝐿) + 𝑢3(𝐵,𝐶,𝐿) = 0.

Using the functional forms, this leads to

(1 − 𝛼)𝑌
𝐿

= 𝐵𝐶𝜏𝐿1/𝜈 . (A.9)

Now write
𝐶 = 𝑍𝐾𝛼𝐿1−𝛼 −𝐾′ + (1 − 𝛿)𝐾 −𝐾Φ(𝐾′/𝐾).

The FOC for 𝐾′ takes the form:

−𝑢2(𝐵,𝐶,𝐿)
[︀
1 + Φ1(𝐾′/𝐾)

]︀
+ 𝛽E

[︀
𝑉1(𝐾′, 𝑆′)

]︀
= 0.

Plugging in the expressions for 𝑢2(·) and 𝑉1(·) we obtain

𝐶−𝜏 [︀1 + Φ1(𝐾′/𝐾)
]︀

(A.10)

= 𝛽E
[︂
𝐶′−𝜏

(︂
𝛼
𝑌 ′

𝐾′ + 1 − 𝛿 − Φ(𝐾′′/𝐾′) + Φ1(𝐾′′/𝐾′)𝐾
′′

𝐾′

)︂]︂
,

where
Φ1(𝑥) = 𝜑1

𝜑2
[1 − exp{−𝜑2(𝑥− 1)}] . (A.11)
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C.1.2 Steady State

Rather than taking (𝑍*, 𝐵*) as given and solving for (𝑌*, 𝐿*) and the remaining steady states, we proceed
in the other direction and solve for (𝑍*, 𝐵*) as a function of (𝑌*, 𝐿*). Notice that the adjustment costs are
zero in steady state because Φ(1) = 0. Moreover, Φ1(1) = 0. We deduce from (A.10) that

1
𝛽

= 𝛼
𝑌*
𝐾*

+ (1 − 𝛿),

which implies that
𝐾* = 𝛼

1/𝛽 − (1 − 𝛿)𝑌*. (A.12)

The capital accumulation equation implies that

𝐼* = 𝛿𝐾* = 𝛼𝛿

1/𝛽 − (1 − 𝛿)𝑌*. (A.13)

The aggregate resource constraint implies that

𝐶* = 𝑌* − 𝐼* =
(︂

1 − 𝛼𝛿

1/𝛽 − (1 − 𝛿)

)︂
𝑌*. (A.14)

The production function can be solved for 𝑍*:

𝑍* = 𝑌*

𝐾𝛼
* 𝐿

1−𝛼
*

=
(︂

1/𝛽 − (1 − 𝛿)
𝛼

)︂𝛼(︂
𝑌*
𝐿*

)︂1−𝛼
. (A.15)

Finally, we solve (A.9) for 𝐵 to obtain 𝐵*:

𝐵* = (1 − 𝛼) 𝑌*
𝐿*
𝐶−𝜏

* 𝐿
−1/𝜈
* .

In the numerical illustration we set 𝑌* = 𝐿* = 1.

C.1.3 Log-Linearization

Log-linearizing Equations (A.6), (A.7), (A.8), and (A.9) yields:

𝑦 = 𝐶*
𝑌*
𝑐+ 𝐼*

𝑌*
𝑖̂ (A.16)

𝑦 = 𝑧 + 𝛼𝑘 + (1 − 𝛼)𝑙̂ (A.17)
𝛿𝑖̂ = 𝑘′ − (1 − 𝛿)𝑘 (A.18)

(1 + 1/𝜈)𝑙̂ = 𝑦 − 𝑏̂− 𝜏𝑐. (A.19)

We proceed with the log-linearization of Φ1(𝑥) in (A.11). Differentiating with respect to the argument
yields

Φ11(𝑥) = 𝜑1 exp{−𝜑2(𝑥− 1)}.

Log-linearizing around 𝑥 = exp(𝑧) = 1 leads to the approximation:

Φ1
(︀

exp(𝑧)
)︀

≈ Φ1(1) + Φ11(1) · 1 · (𝑧 − 0).

In turn, we can write
Φ1(𝐾′/𝐾) ≈ 𝜑1(𝑘′ − 𝑘),

which shows that the linex adjustment cost function is equivalent, up to second order, to a quadratic
adjustment cost function

Φ(𝐾′/𝐾) ≈ 𝜑1
2
(︀
𝐾′/𝐾 − 1

)︀2
.
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We now turn to the log-linearization of (A.10) using the observation that Φ1(1) = 0:

−𝜏𝐶−𝜏
* 𝑐+ 𝐶−𝜏

* 𝜑1(𝑘′ − 𝑘)

= −𝜏𝛽𝐶−𝜏
* (𝛼𝑌*/𝐾* + 1 − 𝛿)E[𝑐′] + 𝛼𝛽𝐶−𝜏

*
𝑌*
𝐾*

E[𝑦′ − 𝑘′] + 𝜑1𝛽𝐶
−𝜏
* E[𝑘′′ − 𝑘′].

Multiplying by 𝐶𝜏* , using (A.12), and noting that 𝑘′ is in the information for the conditional expectation
E[·] yields the simplified equation:

−𝜏𝑐+ 𝜑1(𝑘′ − 𝑘) = −𝜏E[𝑐′] +
(︀
1 − 𝛽(1 − 𝛿)

)︀(︀
E[𝑦′] − 𝑘′)︀+ 𝜑1𝛽

(︀
E[𝑘′′] − 𝑘′)︀. (A.20)

Equations (A.16) to (A.20) and the laws of motion for 𝑧 and 𝑏̂ form a linear rational expectations system
that determines the dynamics of the model.

After setting 𝑌* = 𝐿* = 1, the measurement equations in (25) can be written as

ln𝑌 𝑜 = 𝑦 + 𝜂𝑌 , ln 𝐼𝑜 = ln
(︂

𝛼𝛿

1/𝛽 − (1 − 𝛿)

)︂
+ 𝑖̂+ 𝜂𝐼 , ln𝐿𝑜 = 𝑙̂ + 𝜂𝑙. (A.21)

C.2 Model Solution, and Computational Details

While the approximate model 𝑀0 refers to a first-order linearization around the steady state and is described
in Section C.1 above, we obtain 𝑀1 as a second-order linearization around the steady state, computed
following Schmitt-Grohé and Uribe (2004). To implement it in Julia, we use the package SolveDSGE,
developed by Richard Dennis and available at https://github.com/RJDennis.

C.3 Further Results for the RBC Model

Fig. A-6: RBC Model: Simulated Data
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Fig. A-7: RBC Model: Target and Approximate Posterior Densities

Notes: Each plot refers to a different parameter. The approximating posterior densities obtained from the tempered 𝑀0

likelihood function for 𝜓* ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} are plotted in shades (the larger 𝜓* the darker) of gray. The 𝑀1

posterior is depicted in blue.

Fig. A-8: RBC Model: Absolute Runtimes

Notes: Absolute runtime as a function of 𝜓* based on a single run (𝑁𝑟𝑢𝑛 = 1).


