Abstract
Seasonal affective disorder (SAD) is characterized by recurrent depression occurring generally in fall/winter. Numerous pieces of evidence indicate the association of SAD with decreased brain neurotransmitter serotonin (5-HT) system functioning. Tryptophan hydroxylase 2 (TPH2) is the key and rate-limiting enzyme in 5-HT synthesis in the brain. This paper concentrates on the relationship between TPH2 activity and mood disturbances, the association between human TPH2 gene expression and the risk of affective disorder, application of tryptophan to SAD treatment and the animal models of SAD. The main conclusions of this review are as follows: (i) the brain 5-HT deficiency contributes to the mechanism underlying SAD, (ii) TPH2 is involved in the regulation of some kinds of genetically defined affective disorders and (iii) the activation of 5-HT synthesis with exogenous l-tryptophan alone or in combination with light therapy could be effective in SAD treatment. The synergic effect of these combined treatments will have several advantages compared to light or tryptophan therapy alone. First, it is effective in the treatment of patients resistant to light therapy. Secondly, l-tryptophan treatment prolongs the antidepressant effect of light therapy.
Acknowledgments
This study was supported by Russian Scientific Foundation (grant no. 14-25-00038).
References
Abumaria, N., Ribic, A., Anacker, C., Fuchs, E., and Flügge, G. (2008). Stress upregulates TPH1 but not TPH2 mRNA in the rat dorsal raphe nucleus: identification of two TPH2 mRNA splice variants. Cell Mol. Neurobiol. 28, 331–342.10.1007/s10571-007-9259-5Suche in Google Scholar
Alenina, N., Kikic, D., Todiras, M., Mosienko, V., Qadri, F., Plehm, R., Boyé, P., Vilianovitch, L., Sohr, R., Tenner, K., et al. (2009). Growth retardation and altered autonomic control in mice lacking brain serotonin. Proc. Natl. Acad. Sci. USA 106, 10333–10337.10.1073/pnas.0810793106Suche in Google Scholar
Arbisi, P.A., Levine, A.S., Nerenberg, J., and Wolf, J. (1996). Seasonal alteration in taste detection and recognition threshold in seasonal affective disorder: the proximate source of carbohydrate craving. Psychiatry Res. 59, 171–182.10.1016/0165-1781(95)02816-1Suche in Google Scholar
Bach-Mizrachi, H., Underwood, M.D., Kassir, S.A., Bakalian, M.J., Sibille, E., Tamir, H., Mann, J.J., and Arango, V. (2006). Neuronal tryptophan hydroxylase mRNA expression in the human dorsal and median raphe nuclei: major depression and suicide. Neuropsychopharmacology 31, 814–824.10.1038/sj.npp.1300897Suche in Google Scholar
Bach-Mizrachi, H., Underwood, M.D., Tin, A., Ellis, S.P., Mann, J.J., and Arango, V. (2008). Elevated expression of tryptophan hydroxylase-2 mRNA at the neuronal level in the dorsal and median raphe nuclei of depressed suicides. Mol. Psychiatry 13, 507–513.10.1038/sj.mp.4002143Suche in Google Scholar
Beaulieu, J.M., Zhang, X., Rodriguiz, R.M., Sotnikova, T.D., Cools, M.J., Wetsel, W.C., Gainetdinov, R.R., and Caron, M.G. (2008). Role of GSK3β in behavioral abnormalities induced by serotonin deficiency. Proc. Natl. Acad. Sci. USA 105, 1333–1338.10.1073/pnas.0711496105Suche in Google Scholar
Boldrini, M., Underwood, M.D., Mann, J.J., and Arango, V. (2005). More tryptophan hydroxylase in the brainstem dorsal raphe nucleus in depressed suicides. Brain Res. 1041, 19–28.10.1016/j.brainres.2005.01.083Suche in Google Scholar
Bonkale, W.L., Turecki, G., and Austin, M.C. (2006). Increased tryptophan hydroxylase immunoreactivity in the dorsal raphe nucleus of alcohol-dependent, depressed suicide subjects is restricted to the dorsal subnucleus. Synapse 60, 81–85.10.1002/syn.20278Suche in Google Scholar
Borsini, F. (1995). Role of the serotonin system in the forced swim test. Neurosci. Biobehav. Rev. 19, 377–395.10.1016/0149-7634(94)00050-BSuche in Google Scholar
Borsini, F. and Meli, A. (1988). Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology (Berl.) 94, 147–160.Suche in Google Scholar
Brewerton, T.D. (1989). Seasonal variation of serotonin function in humans: research and clinical implications. Ann. Clin. Psychiatry 1, 153–164.10.3109/10401238909149974Suche in Google Scholar
Carlsson, A., Svennerholm, L., and Winblad, B. (1980). Seasonal and circadian monoamine variations in human brains examined post mortem. Acta Psychiatr. Scand. (Suppl.) 280, 75–85.10.1111/acps.1980.61.s280.75Suche in Google Scholar
Cervo, L., Canetta, A., Calcagno, E., Burbassi, S., Sacchetti, G., Caccia, S., Fracasso, C., Albani, D., Forloni, G., and Invernizzi, R.W. (2005). Genotype-dependent activity of tryptophan hydroxylase-2 determines the response to citalopram in a mouse model of depression. J. Neurosci. 25, 8165–8172.10.1523/JNEUROSCI.1816-05.2005Suche in Google Scholar
Chen, G.L., Vallender, E.J., and Miller, G.M. (2008). Functional characterization of the human TPH2 5′ regulatory region: untranslated region and polymorphism modulate gene expression in vitro. Hum. Genet. 122, 645–657.10.1007/s00439-007-0443-ySuche in Google Scholar
Chiu, S.L., Chen, C.M., and Cline, H.T. (2008). Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 58, 708–719.10.1016/j.neuron.2008.04.014Suche in Google Scholar
Choi, S., DiSilvio, B., Fernstrom, M.H., and Fernstrom, J.D. (2009). Meal ingestion, amino acids and brain neurotransmitters: effects of dietary protein source on serotonin and catecholamine synthesis rates. Physiol. Behav. 98, 156–162.10.1016/j.physbeh.2009.05.004Suche in Google Scholar
Cichon, S., Winge, I., Mattheisen, M., Georgi, A., Karpushova, A., Freudenberg, J., Freudenberg-Hua, Y., Babadjanova, G., Van Den Bogaert, A., Abramova, L.I., et al. (2008). Brain-specific tryptophan hydroxylase 2 (TPH2): a functional Pro206Ser substitution and variation in the 5′-region are associated with bipolar affective disorder. Hum. Mol. Genet. 17, 87–97.10.1093/hmg/ddm286Suche in Google Scholar
Cline, B.H., Costa-Nunes, J.P., Cespuglio, R., Markova, N., Santos. A.I., Bukhman, Y.V., Kubatiev, A., Steinbusch, H.W., Lesch, K.P., and Strekalova, T. (2015). Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression. Front. Behav. Neurosci. 26, 37.10.3389/fnbeh.2015.00037Suche in Google Scholar
Cryan, J.F. and Mombereau, C. (2004). In search of a depressive mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol. Psychiatry 9, 326–357.10.1038/sj.mp.4001457Suche in Google Scholar
Dailly, E., Chenu, F., Petit-Demoulière, B., and Bourin, M. (2006). Specificity and efficacy of noradrenaline, serotonin depletion in discrete brain areas of Swiss mice by neurotoxins. J. Neurosci. Methods 150, 111–115.10.1016/j.jneumeth.2005.06.008Suche in Google Scholar
Dang, Y., Dale, W.E., and Brown, O.R. (2000). Comparative effects of oxygen on indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase of the kynurenine pathway. Free Radic. Biol. Med. 28, 615–624.10.1016/S0891-5849(99)00272-5Suche in Google Scholar
De Luca, V., Likhodi, O., Van Tol, H.H., Kennedy, J.L., and Wong, A.H. (2005). Tryptophan hydroxylase 2 gene expression and promoter polymorphisms in bipolar disorder and schizophrenia. Psychopharmacology (Berl.) 183, 378–382.10.1007/s00213-005-0191-4Suche in Google Scholar
De Luca, V., Likhodi, O., Van Tol, H.H., Kennedy, J.L., and Wong, A.H. (2006). Gene expression of tryptophan hydroxylase 2 in post-mortem brain of suicide subjects. Int. J. Neuropsychopharmacol. 9, 21–25.10.1017/S1461145705005572Suche in Google Scholar
Delorme, R., Durand, C.M., Betancur, C., Wagner, M., Ruhrmann, S., Grabe, H.J., Nygren, G., Gillberg, C., Leboyer, M., Bourgeron, T., et al. (2006). No human tryptophan hydroxylase-2 gene R441H mutation in a large cohort of psychiatric patients and control subjects. Biol. Psychiatry 60, 202–203.10.1016/j.biopsych.2005.12.014Suche in Google Scholar
Eagles, J.M. (2004). Seasonal affective disorder: a vestigial evolutionary advantage? Med. Hypotheses 63, 767–772.10.1016/j.mehy.2004.07.002Suche in Google Scholar
Einat, H., Kronfeld-Schor, N., and Eilam, D. (2006). Sand rats see the light: short photoperiod induces a depression-like response in a diurnal rodent. Behav. Brain Res. 173, 153–157.10.1016/j.bbr.2006.06.006Suche in Google Scholar
Fernstrom, J.D. (1990). Aromatic amino acids and monoamine synthesis in the central nervous system: influence of the diet. J. Nutr. Biochem. 1, 508–517.10.1016/0955-2863(90)90033-HSuche in Google Scholar
Fernstrom, J.D., Larin, F., and Wartman, R.J. (1973). Correlations between brain tryptophan and plasma neutral amino acids levels following food consumption in rats. Life Sci. 13, 517.10.1016/0024-3205(73)90044-1Suche in Google Scholar
Fitzpatrick, P.F. (1999). Tetrahydropterin-dependent amino acid hydroxylases. Annu. Rev. Biochem. 68, 355–381.10.1146/annurev.biochem.68.1.355Suche in Google Scholar PubMed
Fitzpatrick, P.F. (2003). Mechanism of aromatic amino acid hydroxylation. Biochemistry 42, 14083–14091.10.1021/bi035656uSuche in Google Scholar PubMed PubMed Central
Garriock, H.A., Allen, J.J., Delgado, P., Nahaz, Z., Kling, M.A., Carpenter, L., Burke, M., Burke, W., Schwartz, T., Marangell, L.B., et al. (2005). Lack of association of TPH2 exon XI polymorphisms with major depression and treatment resistance. Mol. Psychiatry 10, 976–977.10.1038/sj.mp.4001712Suche in Google Scholar PubMed
Ghadirian, A.M., Murphy, B.E., and Gendron, M.J. (1998). Efficacy of light versus tryptophan therapy in seasonal affective disorder. J. Affect. Disord. 80, 23–27.10.1016/S0165-0327(98)00053-6Suche in Google Scholar
Glatt, C.E., Carlson, E., Taylor, T.R., Risch, N., Reus, V.I., and Schaefer, C.A. (2005). Response to Zhang et al. (2005): loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45, 11–16. Neuron 48, 704–705.10.1016/j.neuron.2005.11.019Suche in Google Scholar
Grohmann, M., Hammer, P., Walther, M., Paulmann, N., Büttner, A., Eisenmenger, W., Baghai, T.C., Schüle, C., Rupprecht, R., Bader, M., et al. (2010). Alternative splicing and extensive RNA editing of human TPH2 transcripts. PLos One 5, e8956.10.1371/journal.pone.0008956Suche in Google Scholar
Gupta, D., Kurhe, Y., and Radhakrishnan, M. (2014). Antidepressant effects of insulin in streptozotocin induced diabetic mice: modulation of brain serotonin system. Physiol. Behav. 129, 73–78.10.1016/j.physbeh.2014.02.036Suche in Google Scholar
Gutknecht, L., Waider, J., Kraft, S., Kriegebaum, C., Holtmann, B., Reif, A., Schmitt, A., and Lesch, K.P. (2008). Deficiency of brain 5-HT synthesis but serotonergic neuron formation in Tph2 knockout mice. J. Neural. Transm. 115, 1127–1132.10.1007/s00702-008-0096-6Suche in Google Scholar
Guzzetti, S., Calcagno, E., Canetta, A., Sacchetti, G., Fracasso, C., Caccia, S., Cervo, L., and Invernizzi, R.W. (2008). Strain differences in paroxetine-induced reduction of immobility time in the forced swimming test in mice: role of serotonin. Eur. J. Pharmacol. 594, 117–124.10.1016/j.ejphar.2008.07.031Suche in Google Scholar
Han, L., Nielsen, D.A., Rosenthal, N.E., Jefferson, K., Kaye, W., Murphy, D., Altemis, M, Humphries, J., Cassano, G., Rotondo, A., et al. (1999). No coding variant of the tryptophan hydroxylase gene detected in seasonal affective disorder, obsessive compulsive disorder, anorexia nervosa and alcoholism. Biol. Psychiatry 45, 615–619.10.1016/S0006-3223(98)00122-XSuche in Google Scholar
Henningsson, S., Annerbrink, K., Olsson, M., Allgulander, C., Andersch, S., Sjödin, I., Gustafson, D., Skoog, I., Eriksson, E., and Westberg, L. (2007). Absence of the Arg441His polymorphism in the tryptophan hydroxylase 2 gene in adults with anxiety disorders and depression. Am. J. Med. Genet. (Neuropsychiatric Genetics) 177, 816–817.10.1002/ajmg.b.30424Suche in Google Scholar PubMed
Huang, C.C., Lee, C.C., and Hsu, K.S. (2010). The role of insulin receptor signaling in synaptic plasticity and cognitive function. Chang. Gung. Med. J. 33, 115–125.Suche in Google Scholar
Jacobsen, J.P., Medvedev, I.O., and Caron, M.G. (2012). The 5-HT deficiency theory of depression: perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2 Arg439His knockin mouse. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 367, 2444–2459.10.1098/rstb.2012.0109Suche in Google Scholar PubMed PubMed Central
Johansson, C., Smedh, C., Partonen, T., Pekkarinen, P., Paunio, T., Ekholm, J., Peltonen, L., Lichtermann, D., Palmgren, J., Adolfsson, R., et al. (2001). Seasonal affective disorder and serotonin-related polymorphisms. Neurobiol. Dis. 8, 351–357.10.1006/nbdi.2000.0373Suche in Google Scholar PubMed
Kim, Y.K., Lee, H.J., Yang, J.C., Hwang, J.A., and Yoon, H.K. (2009). A tryptophan hydroxylase 2 gene polymorphism is associated with panic disorder. Behav. Genet. 39, 170–175.10.1007/s10519-008-9254-8Suche in Google Scholar
Kornum, B.R., Licht, C.L., Weikop, P., Knudsen, G.M., and Aznar, S. (2006). Central serotonin depletion affects rat brain areas differently: a qualitative and quantitative comparison between different treatment schemes. Neurosci. Lett. 392, 129–134.10.1016/j.neulet.2005.09.013Suche in Google Scholar
Kräuchi, K., Wirz-Justice, A., and Graw, P. (1990). The relationship of affective state of dietary preference: winter depression and light therapy as a model. J. Affect. Disorder 20, 43–53.10.1016/0165-0327(90)90048-DSuche in Google Scholar
Kulikov, A.V., Osipova, D.V., Naumenko, V.S., and Popova NK. (2005). Association between Tph2 gene polymorphism, brain tryptophan hydroxylase activity and aggressiveness in mouse strains. Genes Brain Behav. 4, 482–485.10.1111/j.1601-183X.2005.00145.xSuche in Google Scholar PubMed
Kulikov, A.V., Tikhonova, M.A., Osipova, D.V., Kulikov, V.A., and Popova, N.K. (2011). Association between tryptophan hydroxylase-2 genotype and the antidepressant effect of citalopram and paroxetine on immobility time in the forced swim test in mice. Pharmacol. Biochem. Behav. 99, 683–687.10.1016/j.pbb.2011.06.020Suche in Google Scholar PubMed
Kulikov, A.V., Osipova, D.V., Naumenko, V.S., Terenina, E., Mormède, P., and Popova, N.K. (2012). A pharmacological evidence of positive association between mouse intermale aggression and brain serotonin metabolism. Behav. Brain Res. 233, 113–119.10.1016/j.bbr.2012.04.031Suche in Google Scholar PubMed
Lam, R.W., Gorman, C.P., Michalon, M., Steiner, M., Levitt, A.J., Corral, M.R., Watson, G.D., Morehouse, R.L., Tam, W., and Joffe, R.T. (1995). Multicenter, placebo-controlled study of fluoxetine in seasonal affective disorder. Am. J. Psychiatry 152, 1765–1770.10.1176/ajp.152.12.1765Suche in Google Scholar PubMed
Lam, R.W., Levitan, R.D., Tam, E.M., Yatham, L.N., Lamoureux, S., and Zis, A.P. (1997). L-tryptophan augmentation of light therapy in patients with seasonal affective disorder. Can. J. Psychiatry 42, 303–306.10.1177/070674379704200309Suche in Google Scholar PubMed
Lam, R.W., Levitt, A.J., Levitan, R.D., Enns, M.W., Morehouse, R., Michalak, E.E., and Tam, E.M. (2006). The Can-SAD study a randomized controlled trials of the effectiveness of light therapy and fluoxetine in patients with winter seasonal affective disorder. Am. J. Psychiatry 163, 805–812.10.1176/ajp.2006.163.5.805Suche in Google Scholar PubMed
Lapin, I.P. (1996). Kynurenines and anxiety. Adv. Exp. Med. Biol. 398, 191–194.10.1007/978-1-4613-0381-7_31Suche in Google Scholar PubMed
Leach, G., Ramanathan, C., Langel, J., and Yan, L. (2013). Responses of brain and behavior to changing day-length in the diurnal grass rat (Arvicanthis niloticus). Neuroscience 234, 31–39.10.1016/j.neuroscience.2013.01.002Suche in Google Scholar
Levitan, R.D. (2007). The chronobiology and neurobiology of winter seasonal affective disorder. Dialogues Clin. Neurosci. 9, 315–324.10.31887/DCNS.2007.9.3/rlevitanSuche in Google Scholar
Lieberman, H.R., Wurtman, J.J., and Chew, B. (1986). Changes in mood after carbohydrate consumption among obese individuals. Am. J. Clin. Nutrition 44, 772–778.10.1093/ajcn/44.6.772Suche in Google Scholar
Lin, Y.M., Chao, S.C., Chen, T.M., Lai, T.J., Chen, J.S., and Sun, H.S. (2007). Association of functional polymorphisms of the human tryptophan hydroxylase 2 gene with risk for bipolar disorder in Han Chinese. Arch. Gen. Psychiatry 64, 1015–1024.10.1001/archpsyc.64.9.1015Suche in Google Scholar
Maes, M., Leonard, B.E., Myint, A.M., Kubera, M., and Verkerk, R. (2011). The new “5-HT” hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Progr. Neuro-Psychopharmacol. Biol. Psychiatry 35, 702–721.10.1016/j.pnpbp.2010.12.017Suche in Google Scholar
Magnusson, A. (2000). An overview of epidemiological studies on seasonal affective disorder. Acta. Psychiatr. Scand. 101, 176–184.10.1034/j.1600-0447.2000.101003176.xSuche in Google Scholar
Matthes, S., Mosienko, V., Bashammakh, S., Alenina, N., and Bader, M. (2010). Tryptophan hydroxylase as novel target for the treatment of depressive disorders. Pharmacology 85, 95–109.10.1159/000279322Suche in Google Scholar
McGrath, R.E., Buckwald, B., and Resnick, E.V. (1990). The effect of L-tryptophan on seasonal affective disorder. J. Clin. Psychiatry 51, 162–163.Suche in Google Scholar
McKinney, J.A., Turel, B., Winge, I., Knappskog, P.M., and Haavik, J. (2009). Functional properties of missense variants of human tryptophan hydroxylase 2. Hum. Mutat. 30, 787–794.10.1002/humu.20956Suche in Google Scholar
Mehta, H., Saravanan, K.S., and Mohanakumar, K.P. (2003). Serotonin synthesis inhibition in olivo-cerebellar system attenuates harmaline-induced tremor in Swiss albino mice. Behav. Brain Res. 145, 31–36.10.1016/S0166-4328(03)00094-9Suche in Google Scholar
Miller, A.L. (2005). Epidemiology, etiology, and natural treatment of seasonal affective disorder. Altern. Med. Rev. 10, 5–13.Suche in Google Scholar
Monti, J.M. (2011). Serotonin control of sleep-wake behavior. Sleep Med. Rev. 15, 269–281.10.1016/j.smrv.2010.11.003Suche in Google Scholar PubMed
Mosienko, V., Bert, B., Beis, D., Matthes, S., Fink, H., Bader, M., and Alenina, N. (2012). Exaggerated aggression and decreased anxiety in mice deficient in brain serotonin. Transl. Psychiatry 2, e122.10.1038/tp.2012.44Suche in Google Scholar
Mössner, R., Freitag, C.M., Gutknecht, L., Reif, A., Tauber, R., Franke, P., Fritze, J., Wagner, G., Peikert, G., Wenda, B., et al. (2006). The novel brain-specific tryptophan hydroxylase-2 gene in panic disorder. J. Psychopharmacol. 20, 547–552.10.1177/0269881106059704Suche in Google Scholar
Myint, A.M. and Kim, Y.K. (2014). Network beyond IDO in psychiatric disorders: revisiting neurodegeneration hypothesis. Progr. Neuro-Psychopharmacol. Biol. Psychiatry 48, 304–313.Suche in Google Scholar
Nakamura, K. and Hasegawa, H. (2007). Developmental role of tryptophan hydroxylase in the nervous system. Mol. Neurobiol. 35, 45–54.10.1007/BF02700623Suche in Google Scholar
Osipova, D.V., Kulikov, A.V., and Popova, N.K. (2009). C1473G polymorphism in mouse tph2 gene is linked to tryptophan hydroxylase-2 activity in the brain, intermale aggression, and depressive-like behavior in the forced swim test. J. Neurosci. Res. 87, 1168–1174.10.1002/jnr.21928Suche in Google Scholar
Osipova, D.V., Kulikov, A.V., Mekada, K., Yoshiki, A., Moshkin, M.P., Kotenkova, E.V. and Popova, N.K. (2010). Distribution of the C1473G polymorphism in tryptophan hydroxylase 2 gene in laboratory and wild mice. Genes Brain Behav. 9, 537–543.10.1111/j.1601-183X.2010.00586.xSuche in Google Scholar
Otsuka, T., Kawai, M., Togo, Y., Goda, R., Kawase, T., Matsuo, H., Iwamoto, A., Nagasawa, M., Furuse, M., and Yasuo, S. (2014). Photoperiodic responses of depression-like behavior, the brain serotonergic system, and peripheral metabolism in laboratory mice. Psychoneuroendocrinology 40, 37–47.10.1016/j.psyneuen.2013.10.013Suche in Google Scholar
Oxenkrug, G.F. (2010). Metabolic syndrome, age-associated neuroendocrine disorders, and dysregulation of tryptophan-kynurenine metabolism. Ann. NY Acad. Sci. 1199, 1–14.10.1111/j.1749-6632.2009.05356.xSuche in Google Scholar
Partonen, T. and Lonnqvist, J. (1996). Moclobemide and fluoxetine in treatment of seasonal affective disorder. J. Affect. Disord. 41, 93–99.10.1016/S0165-0327(96)00073-0Suche in Google Scholar
Patel, P.D., Bochar, D.A., Turner, D.L., Meng, F., Mueller, H.M., and Pontrello, C.G. (2007). Regulation of tryptophan hydroxylase-2 gene expression by a bipartite RE-1 silencer of transcription/neuron restrictive silencing factor (REST/NRSF) binding motif. J. Biol. Chem. 282, 26717–26724.10.1074/jbc.M705120200Suche in Google Scholar PubMed
Perroud, N., Neidhart, E., Petit, B., Vessaz, M., Laforge, T., Relecom, C., La Harpe, R., Malafosse, A., and Guipponi, M. (2010). Simultaneous analysis of serotonin transporter, tryptophan hydroxylase 1 and 2 gene expression in the ventral prefrontal cortex of suicide victims. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B, 909–918.10.1002/ajmg.b.31059Suche in Google Scholar PubMed
Popova, N.K. and Kulikov, A.V. (2010). Targeting tryptophan hydroxylase 2 in affective disorder. Expert Opin. Ther. Targets 14, 1259–1271.10.1517/14728222.2010.524208Suche in Google Scholar
Praschak-Rieder, N. and Willeit, M. (2003). Treatment of seasonal affective disorders. Dialogues Clin. Neurosci. 5, 389–398.10.31887/DCNS.2003.5.4/npraschakriederSuche in Google Scholar
Prendergast, B.J. and Nelson, R.J. (2005). Affective responses to changes in day length in Siberian hamsters (Phodopus sungorus). Psychoneuroendocrinology 30, 438–452.10.1016/j.psyneuen.2004.08.008Suche in Google Scholar
Rongvaux, A., Andris, F., Van Gool, F., and Leo, O. (2003). Reconstructing eukaryotic NAD metabolism. Bioessays 25, 683–690.10.1002/bies.10297Suche in Google Scholar
Roseboom, P.H., Namboodiri, M.A., Zimonjic, D.B., Popescu, N.C., Rodriguez, I.R., Gastel, J.A., and Klein, D.C. (1998). Natural melatonin ‘knockdown’ in C57BL/6J mice: rare mechanism truncates serotonin N-acetyltransferase. Brain Res. Mol. Brain Res. 63, 189–197.10.1016/S0169-328X(98)00273-3Suche in Google Scholar
Rosen, L.N., Targum, S.D., Terman, M., Bryant, M.J., Hoffman, H., Kasper, S.F., Hamovit, J.R., Docherty, J.P., Welch, B., and Rosenthal, N.E. (1990). Prevalence of seasonal affective disorder at four latitudes. Psychiatry Res. 31, 131–144.10.1016/0165-1781(90)90116-MSuche in Google Scholar
Rosenthal, N.E., Sack, D.A., Gillin, J.C., Lewy, A.J., Goodwin, F.K., Davenport, Y., Mueller, P.S., Newsome, D.A., and Wehr, T.A. (1984). Seasonal affective disorder: a description of the syndrome and preliminary finding with light therapy. Arch. Gen. Psychiatry 41, 72–80.10.1001/archpsyc.1984.01790120076010Suche in Google Scholar
Rosenthal, N.E., Genhart, M.J., Caballero, B., Jacobsen, F.M., Skwerer, R.G., Coursey, R., Rogers, S., and Spring, B.J. (1989). Psychobiological effects carbohydrate- and protein rich meals in patients with seasonal affective disorder and normal controls. Biol. Psychiatry 25, 1029–1040.10.1016/0006-3223(89)90291-6Suche in Google Scholar
Ruhrmann, S., Kasper S., Hawellek, B., Martinez, B., Hoflich, G., Nickelsen, T., and Möller, H.J. (1998). Effect of fluoxetine versus bright light in the treatment of seasonal affective disorder. Psychol. Med. 28, 923–933.10.1017/S0033291798006813Suche in Google Scholar
Sachs, B.D., Jacobsen, J.P.R., Thomas, T.L., Siesser, W.B., Roberts, W.L., and Caron, M.G. (2013). The effects of congenital brain serotonin deficiency on responses to chronic fluoxetine. Transl. Psychiatry 3, e291.10.1038/tp.2013.65Suche in Google Scholar PubMed PubMed Central
Sanassi, L.A. (2014). Seasonal affective disorder: is there light at the end of the tunnel. JAAPA 27, 18–22.10.1097/01.JAA.0000442698.03223.f3Suche in Google Scholar
Sandyk, R. (1992). L-Tryptophan in neuropsychiatric disorders: a review. Int. J. Neurosci. 67, 127–144.10.3109/00207459208994781Suche in Google Scholar
Savelieva, K.V., Zhao, S., Pogorelov, V.M., Rajan, I., Yang, Q., Cullinan, E., and Lanthorn, T.H. (2008). Genetic disruption of both tryptophan hydroxylase genes dramatically reduced serotonin and affect behavior in models sensitive to antidepressants. PLoS One 3, e3301.10.1371/journal.pone.0003301Suche in Google Scholar
Sayegh, R., Schiff, I., Wurtman, J., Spiers, P., McDermott, J., and Wurtman, R. (1995). The effect of carbohydrate-rich beverage on mood, appetite, and cognitive function in women with premenstrual syndrome. Obstetr. Gynecol. 86, 520–528.10.1016/S0029-7844(95)80009-3Suche in Google Scholar
Scheuch, K., Lautenschlager, M., Grohmann, M., Stahlberg, S., Kirchheiner, J., Zill, P., Heinz, A., Walther, D.J., and Priller, J. (2007). Characterization of a functional promoter polymorphism of the human tryptophan hydroxylase 2 gene in serotonin raphe neurons. Biol. Psychiatry 62, 1288–1294.10.1016/j.biopsych.2007.01.015Suche in Google Scholar
Schwarcz, R. and Pellicciari, R. (2002). Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J. Pharmacol. Exp. Ther. 303, 1–10.10.1124/jpet.102.034439Suche in Google Scholar
Shabbir, F., Patel, A., Mattison, C., Bose, S., Krishnamohan, R., Sweeney, E., Sandhu, S., Nel, W., Rais, A., Sandhu, R., et al. (2013). Effect of diet on serotonergic neurotransmission in depression. Neurochem. Int. 62, 324–329.10.1016/j.neuint.2012.12.014Suche in Google Scholar
Shamir, A., Shaltiel, G., Levi, I., Belmaker, R.H., and Agam, G. (2005). Postmortem pariantal cortex TPH2 expression is not altered in schizophrenic, unipolar-depressed, and bipolar patients vs control subjects. J. Mol. Neurosci. 26, 33–37.10.1385/JMN:26:1:033Suche in Google Scholar
Siesser, W.B., Zhang, X., Jacobsen, J.P., Sotnikova, T.D., Gainetdinov, R.R., and Caron, M.G. (2010). Tryptophan hydroxylase 2 genotype determines brain serotonin synthesis but not tissue content in C57Bl/6J and BALB/cJ congenic mice. Neurosci. Lett. 481, 6–11.10.1016/j.neulet.2010.06.035Suche in Google Scholar PubMed PubMed Central
Siesser, W.B., Sachs, B.D., Ramsey, A.J., Sotnikova, T.D., Beaulieu, J.M., Zhang, X., Caron, M.G., and Gainetdinov, R.R. (2013). Chronic SSRI treatment exacerbate serotonin deficiency in humanized Tph2 mutant mice. ASC Chem. Neurosci. 4, 84–88.10.1021/cn300127hSuche in Google Scholar PubMed PubMed Central
Sousa Neto, J.A., Seidel, A., Manz, B., and Vollrath, L. (1995). p-Chlorophenylalanine treatment depresses the number of synaptic ribbon profiles in the rat pineal gland, but does not abolish their day-night rhythm. Ann. Anat. 177, 105–110.10.1016/S0940-9602(11)80053-1Suche in Google Scholar
Steinberg, S., Annable, L., and Young, S.N. (1994). Tryptophan in the treatment of late luteal phase dysphoric disorder: a pilot study. J. Psychiatry Neurosci. 19, 114–119.Suche in Google Scholar
Tam, E.M., Lam, R.W., and Levitt, A.J. (1995). Treatment of seasonal affective disorder: a review. Can. J. Psychiatry 40, 457–466.10.1177/070674379504000806Suche in Google Scholar
Tenner, K., Qadri, F., Bert, B., Voigt, J.P., and Bader, M. (2008). The mTPH2 C1473G single nucleotide polymorphism is not responsible for behavioral differences between mouse strains. Neurosci. Lett. 431, 21–25.10.1016/j.neulet.2007.11.012Suche in Google Scholar
Terman, M., Terman, J.S., Quitkin, F.M., McGrath, P.J., Stewart, J.W., and Rafferty, B. (1989). Light therapy for seasonal affective disorder: a review of efficacy. Neuropsychopharmacology 2, 1–22.10.1016/0893-133X(89)90002-XSuche in Google Scholar
Underwood, M.D., Khaibulina, A.A., Ellis, S.P., Moran, A., Rice, P.M., Mann, J.J., and Arango, V. (1999). Morphometry of the dorsal raphe nucleus serotonergic neurons in suicide victims. Biol. Psychiatry 46, 473–483.10.1016/S0006-3223(99)00043-8Suche in Google Scholar
Underwood, M.D., Mann, J.J., and Arango, V. (2004). Serotonergic and noradrenergic neurobiology of alcoholic suicide. Alcohol Clin. Exp. Res. 28(Suppl.), 57S–69S.10.1097/01.ALC.0000127415.15000.CASuche in Google Scholar
Van Den Bogaert, A., Sleegers, K., De Zutter, S., Heyrman, L., Norrback, K.F., Adolfsson, R., Van Broeckhoven, C., and Del-Favero, J. (2006). Association of brain-specific tryptophan hydroxylase, TPH2, with unipolar and bipolar disorder in a Northern Swedish, isolated population. Arch. Gen. Psychiatry 63, 1103–1110.10.1001/archpsyc.63.10.1103Suche in Google Scholar
van der Goot, A.T. and Nollen, E.A. (2013). Tryptophan metabolism: entering the field of aging and age-related pathologies. Trend Mol. Med. 19, 336–344.10.1016/j.molmed.2013.02.007Suche in Google Scholar
Van Praag, H.M. (2004). Can stress cause depression? Progr. Neuro-Psychopharmacol. Biol. Psychiatry 28, 891–907.Suche in Google Scholar
Waider, J., Araragi, N., Gutknecht, L., and Lesch, K.P. (2011). Tryptophan hydroxylase-2 (TPH2) in disorders of cognitive control and emotion regulation: a perspective. Psychoneuroendocrinology 36, 393–405.10.1016/j.psyneuen.2010.12.012Suche in Google Scholar
Walther, D. and Bader, M. (2003). A unique central tryptophan hydroxylase isoform. Biochem. Pharmacol. 66, 1673–1680.10.1016/S0006-2952(03)00556-2Suche in Google Scholar
Walther, D.J., Peter, J.U., Bashammakh, S., Hörtnagl, H., Voits, M., Fink, H., and Bader, M. (2003). Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299, 76.10.1126/science.1078197Suche in Google Scholar
Willner, P. (1990). Animal models of depression: an overview. Pharmacol. Ther. 45, 425–455.10.1016/0163-7258(90)90076-ESuche in Google Scholar
Willner, P. and Mitchell, P.J. (2002). The validity of animal models of predisposition to depression. Behav. Pharmacol. 13, 169–188.10.1097/00008877-200205000-00001Suche in Google Scholar
Wurtmam, R.J. (1987). Nutrients affecting brain composition and behavior. Integr. Psychiatry 5, 226–57.Suche in Google Scholar
Wurtman, R.J. and Wurtman, J.J. (1986). Carbohydrate craving, obesity and brain serotonin. Appetite 7, 99.10.1016/S0195-6663(86)80055-1Suche in Google Scholar
Wurtman, J.J., Brzezinski, A., Wurtman, R.J., and Laferrere, B. (1989). Effect of nutrient intake on premenstrual depression. Am. J. Obstetr. Gynecol. 161, 1228–1234.10.1016/0002-9378(89)90671-6Suche in Google Scholar
Yacoubi, M.E. and Vaugeois, J.M. (2007). Genetic rodent models of depression. Curr. Opin. Pharmacol. 7, 3–7.10.1016/j.coph.2006.11.002Suche in Google Scholar PubMed
Zhang, X., Beaulieu, J.M., Sotnikova, T.D., Gainetdinov, R.R., and Caron, M.G. (2004). Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305, 217.10.1126/science.1097540Suche in Google Scholar PubMed
Zhang, X., Gainetdinov, R.R., Beaulieu, J.M., Sotnikova, T.D., Burch, L.H., Williams, R.B., Schwartz, D.A., Krishnan, K.R., and Caron, M.G. (2005). Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45, 11–16.10.1016/j.neuron.2004.12.014Suche in Google Scholar PubMed
Zhang, X., Nichols, P.J., Laje, G., Beaulieu, J.M., Sotnikova, T.D., Gainetdinov, R.R., Albert, P.R., Raikowska, G., Stockmeier, C.A., Speer, M.C., et al. (2011). A functional alternative splicing mutation in human tryptophan hydroxylase 2. Mol. Psychiatry, 16, 1169–1176.10.1038/mp.2010.99Suche in Google Scholar PubMed PubMed Central
Zhou, Z., Roy, A., Lipsky, R., Kuchipudi, K., Zhu, G., Taubman, J., Enoch, M.A., Virkkunen, M., and Goldman, D. (2005). Haplotype-based linkage of tryptophan hydroxylase 2 to suicide attempt, major depression, and cerebrospinal fluid 5-hydroxyindoleacetic acid in 4 populations. Arch. Gen. Psychiatry 62, 1109–1118.10.1001/archpsyc.62.10.1109Suche in Google Scholar PubMed
Zill, P., Büttner, A., Eisenmenger, W., Möller, H.J., Ackenheil, M., and Bondy, B. (2007). Analysis of tryptophan hydroxylase I and II mRNA expression in the human brain: a post-mortem study. J. Psychiatr. Res. 41, 168–173.10.1016/j.jpsychires.2005.05.004Suche in Google Scholar PubMed
©2015 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Magnetic resonance spectroscopy of the brain: a review of physical principles and technical methods
- The utility of fractal analysis in clinical neuroscience
- The importance of the negative blood-oxygenation-level-dependent (BOLD) response in the somatosensory cortex
- Electric foot shock stress: a useful tool in neuropsychiatric studies
- Tryptophan hydroxylase 2 in seasonal affective disorder: underestimated perspectives?
- Receptor for advanced glycation end-products in neurodegenerative diseases
- Phytochemical constituents as future antidepressants: a comprehensive review
- Spotting psychopaths using technology
Artikel in diesem Heft
- Frontmatter
- Magnetic resonance spectroscopy of the brain: a review of physical principles and technical methods
- The utility of fractal analysis in clinical neuroscience
- The importance of the negative blood-oxygenation-level-dependent (BOLD) response in the somatosensory cortex
- Electric foot shock stress: a useful tool in neuropsychiatric studies
- Tryptophan hydroxylase 2 in seasonal affective disorder: underestimated perspectives?
- Receptor for advanced glycation end-products in neurodegenerative diseases
- Phytochemical constituents as future antidepressants: a comprehensive review
- Spotting psychopaths using technology