Abstract
Electric foot shock is a complex stressor with both physical and emotional components. It has been employed as an important tool to develop diverse animal models in the field of psychopharmacology. The electric foot shock paradigm includes acute or chronic exposures of shocks of varying intensity and duration on an electrified grid floor in an electric foot shock apparatus. Research evidence reveals that foot shocks of varying intensity produce behavioral and neurochemical changes reflecting depression, anxiety, and post-traumatic stress disorder (PTSD) in humans. Animals generally do not habituate to foot shocks in comparison to other stressors, including loud noise, bright light, and hot and cold temperatures. Additionally, it offers an experimental advantage of control over intensity and duration; therefore, by varying its application parameters, different disorder models have been created. Electric foot shock fear conditioning-induced ultrasonic vocalization and fear-potentiated startle have been explored to develop models of anxiety and panic. Similarly, fear conditioning in the form of foot shock exposure followed by situational reminders has been used to develop a model of PTSD. Electric foot shock-induced conflict has been explored to develop operant conflict models (Geller-Seifter and Vogel tests), which in turn are pharmacologically validated to screen potential anti-anxiety agents. Inescapable electric shock-induced ‘learned helplessness’ mimics the symptomology of depression, and this phenomenon has been employed to develop the model of depression. The present review describes the pharmacologically validated models of anxiety, depression, and PTSD involving electric foot shock as an aversive stimulus.
Acknowledgments
The authors are grateful to Mr. Sumit Charaya and Ms. Kiran Bali, Clinical Psychologist, University of Birmingham, UK, for editing the original manuscript. The authors are thankful to the Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India, for supporting this study.
References
Abramson, L.Y., Seligman, M.E., and Teasdale, J.D. (1978). Learned helplessness in humans: critique and reformulation. J. Abnorm. Psychol. 87, 49–74.10.1037/0021-843X.87.1.49Search in Google Scholar
Adamec, R.E. and Shallow, T. (1993). Lasting effects on rodent anxiety of a single exposure to a cat. Physiol. Behav. 54, 101–109.10.1016/0031-9384(93)90050-PSearch in Google Scholar
Agrawal, A., Jaggi, A.S., and Singh, N. (2011). Pharmacological investigations on adaptation in rats subjected to cold water immersion stress. Physiol. Behav. 103, 321–329.10.1016/j.physbeh.2011.02.014Search in Google Scholar
Amano, M., Goto, A., Sakai, A., Achiha, M., Takahashi, N., Hara, C., and Ogawa, N. (1993). Comparison of the anticonflict effect of buspirone and its major metabolite 1-(2-pyrimidinyl)-piperazine (1-PP) in rats. Jpn. J. Pharmacol. 61, 311–317.10.1254/jjp.62.199Search in Google Scholar
Amat, J., Baratta, M.V., Paul, E., Bland, S.T., Watkins, L.R., and Maier, S.F. (2005). Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat. Neurosci. 8, 365–371.10.1038/nn1399Search in Google Scholar
Anagnostaras, S.G., Maren, S., and Fanselow, M.S. (1995). Scopolamine selectively disrupts the acquisition of contextual fear conditioning in rats. Neurobiol. Learn. Mem. 64, 191–194.10.1006/nlme.1995.0001Search in Google Scholar
Anagnostaras, S.G., Maren, S., Sage, J.R., Goodrich, S., and Fanselow, M.S. (1999). Scopolamine and Pavlovian fear conditioning in rats: dose-effect analysis. Neuropsychopharmacol. 21, 731–744.10.1016/S0893-133X(99)00083-4Search in Google Scholar
Antoniadis, E.A. and McDonald, R.J. (2006). Fornix, medial prefrontal cortex, nucleus accumbens, and mediodorsal thalamic nucleus: roles in a fear-based context discrimination task. Neurobiol. Learn. Mem. 85, 71–85.10.1016/j.nlm.2005.08.011Search in Google Scholar
Aston-Jones, G., Ennis, M., Pieribone, V.A., Nickell, W.T., and Shipley, M.T. (1986). The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 234, 734–737.10.1126/science.3775363Search in Google Scholar
Babbini, M., Gaiardi, M., and Bartoletti, M. (1982). Benzodiazepine effects upon Geller–Seifter conflict test in rats: analysis of individual variability. Pharmacol. Biochem. Behav. 17, 43–48.10.1016/0091-3057(82)90260-XSearch in Google Scholar
Baca, E., Garcia-Garcia, M., and Porras-Chavarino, A. (2004). Gender differences in treatment response to sertraline versus imipramine in patients with nonmelancholic depressive disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 28, 57–65.Search in Google Scholar
Bali, A. and Jaggi, A.S. (2015). Electric foot shock stress adaptation: Does it exist or not? Life Sci. 130, 97–102.10.1016/j.lfs.2015.03.004Search in Google Scholar
Basso, A.M., Gallagher, K.B., Mikusa, J.P., and Rueter, L.E. (2011). Vogel conflict test: sex differences and pharmacological validation of the model. Behav. Brain Res. 218, 174–183.10.1016/j.bbr.2010.11.041Search in Google Scholar
Beatty, W.W. and Beatty, P.A. (1970). Hormonal determinants of sex differences in avoidance behavior and reactivity to electric shock in the rat. J. Comp. Physiol. Psychol. 73, 446–455.10.1037/h0030216Search in Google Scholar
Beaufour, C.C., Balon, N., Le Bihan, C., Hamon, M., and Tiebot, M.H. (1999). Effects of chronic antidepressants in an operant conflict procedure of anxiety in the rat. Pharmacol. Biochem. Behav. 62, 591–599.10.1016/S0091-3057(98)00180-4Search in Google Scholar
Biederman, G.B. and Furedy, J.J. (1973). Preference-for-signaled-shock phenomenon: Effects of shock modifiability and light reinforcement. J. Exp. Psychology 100, 380–386.10.1037/h0035529Search in Google Scholar
Borsini, F., Podhorna, J., and Marazziti, D. (2002). Do animal models of anxiety predict anxiolytic-like effects of antidepressants? Psychopharmacology 163, 121–141.10.1007/s00213-002-1155-6Search in Google Scholar
Brown, J.S., Kalish, H.I., and Farber, I.E. (1951). Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. J. Exp. Psychol. 41, 317–328.10.1037/h0060166Search in Google Scholar
Campbell, B.A. and Masterson, F.A. (1969). Psychophysics of punishment. In: Punishment and aversive behavior, B.A. Campbell and R.M. Church, eds. (New York: AppletonCentury-Crofts).Search in Google Scholar
Carrion, V.G., Weems, C.F., Ray, R.D., Glaser, B., Hessl, D., and Reiss, A.L. (2002). Diurnal salivary cortisol in pediatric posttraumatic stress disorder. Biol. Psychiatry 51, 575–582.10.1016/S0006-3223(01)01310-5Search in Google Scholar
Chang, F.C. and Opp, M.R. (1998). Blockade of corticotropin-releasing hormone receptors reduces spontaneous waking in the rat. Am. J. Physiol. 275, R793–R802.10.1152/ajpregu.1998.275.3.R793Search in Google Scholar PubMed
Chauhan, E., Bali, A., Singh, N., and Jaggi, A.S. (2015). Pharmacological investigations on cross adaptation in mice subjected to stress immobilization. Life Sci. 127, 98–105.10.1016/j.lfs.2015.02.015Search in Google Scholar PubMed
Chourbaji, S., Zacher, C., Sanchis-Segura, C., Dormann, C., Vollmayr, B., and Gass, P. (2005). Learned helplessness: validity and reliability of depressive-like states in mice. Brain Res. Brain Res. Protoc. 16, 70–78.10.1016/j.brainresprot.2005.09.002Search in Google Scholar
Chrapusta, S.J., Wyatt, R.J., and Masserano, J.M. (1997). Effects of single and repeated footshock on dopamine release and metabolism in the brains of Fischer rats. J. Neurochem. 68, 2024–2031.10.1046/j.1471-4159.1997.68052024.xSearch in Google Scholar
Christoffel, D.J., Golden, S.A., and Russo, S.J. (2011). Structural and synaptic plasticity in stress-related disorders. Rev. Neurosci. 22, 535–549.10.1515/RNS.2011.044Search in Google Scholar
Clark, R.E. and Squire, L.R. (1998). Classical conditioning and brain systems: The role of awareness. Science 280, 77–81.10.1126/science.280.5360.77Search in Google Scholar
Cohen, H., Benjamin, J., Kaplan, Z., and Kotler, M. (2000). Administration of high-doseketoconazole, an inhibitor of steroid synthesis, prevents post traumatic anxiety in an animal model. Eur. Neuropsychopharmacol. 10, 429–435.10.1016/S0924-977X(00)00105-XSearch in Google Scholar
Cohen, R.M., Cohen, M.R., and McLellan, C.A. (1986). Foot shock induces time and region specific adrenergic receptor changes in rat brain. Pharmacol. Biochem. Behav. 24, 1587–1592.10.1016/0091-3057(86)90490-9Search in Google Scholar
Cohen, H. and Yehuda, R. (2011). Gender differences in animal models of posttraumatic stress disorder. Dis. Markers. 30, 141–150.10.1155/2011/734372Search in Google Scholar
Cole, S. and McNally, G.P. (2008). Complementary roles for amygdala and periaqueductal gray in temporal-difference fear learning. Learn Mem. 16, 1–7.10.1101/lm.1120509Search in Google Scholar PubMed
Corral-Frias, N.S., Lahood, R.P., Edelman-Vogelsang, K.E, French, E.D., and Fellous, J.M. (2013). Involvement of the ventral tegmental area in a rodent model of post-traumatic stress disorder. Neuropsychopharmacol. 38, 350–363.10.1038/npp.2012.189Search in Google Scholar PubMed PubMed Central
Cui, R., Li, B., Suemaru, K., and Araki, H. (2007). Differential effects of psychological and physical stress on the sleep pattern in rats. Acta. Med. Okayama. 61, 319–327.Search in Google Scholar
Dalla, C., Edgecomb, C., Whetstone, A.S., and Shors, T.J. (2008). Females do not express learned helplessness like males do. Neuropsychopharmacol. 33, 1559–1569.10.1038/sj.npp.1301533Search in Google Scholar PubMed
Davis, M. (1992). The role of the amygdala in fear-potentiated startle: implications for animal models of anxiety. Trends Pharmacol. Sci. 13, 35–41.10.1016/0165-6147(92)90014-WSearch in Google Scholar
de Almeida, L.P., Ramos, P.L., Pandossio, J.E., Landeira-Fernandez, J., Zangrossi, H Jr., and Nogueira, R.L. (2006). Prior electrical stimulation of dorsal periaqueductal grey matter or deep layers of the superior colliculus sensitizes rats to anxiety-like behaviors in the elevated T-maze test. Behav. Brain Res. 170, 175–181.10.1016/j.bbr.2006.02.020Search in Google Scholar
de Novellis, V., Marabese, I., Uliano, R., Palazzo, E., Scafuro, A., sca Rossi, F., and Maione, S. (2000). Type I and II metabotropic glutamate receptors modulate periaqueductal grey glycine release: interaction between mGlu2/3 and A1 adenosine receptors. Neuropharmacol. 43, 1061–1069.10.1016/S0028-3908(02)00227-7Search in Google Scholar
De Oca, B.M., DeCola, J.P., Maren, S., and Fanselow, M.S. (1998). Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses. J. Neurosci. 18, 3426–3432.10.1523/JNEUROSCI.18-09-03426.1998Search in Google Scholar
De Vry J., Benz, U., Schreiber, R., and Traber, J. (1993). Shock-induced ultrasonic vocalization in young adult rats: a model for testing putative anti-anxiety drugs. Eur. J. Pharmacol. 249, 331–339.10.1016/0014-2999(93)90530-USearch in Google Scholar
Deschaux, O., Zheng, X., Lavigne, J., Nachon, O., Cleren, C., Moreau, J.L., and Garcia, R. (2013). Post-extinction fluoxetine treatment prevents stress-induced reemergence of extinguished fear. Psychopharmacology (Berl.) 225, 209–216.10.1007/s00213-012-2806-xSearch in Google Scholar
Diagnostic and Statistical Manual of Mental Disorders, 4th edition, American Psychiatric Association, 1994.Search in Google Scholar
Enkel, T., Spanagel, R., Vollmayr, B., and Schneider, M. (2010). Stress triggers anhedonia in rats bred for learned helplessness. Behav. Brain Res. 209, 183–186.10.1016/j.bbr.2010.01.042Search in Google Scholar
Fendt, M. (2000). Expression and conditioned inhibition of fear-potentiated startle after stimulation and blockade of AMPA/Kainate and GABA(A) receptors in the dorsal periaqueductal gray. Brain Res. 880, 1–10.10.1016/S0006-8993(00)02665-2Search in Google Scholar
Fendt, M. and Fanselow, M.S. (1999). The neuroanatomical and neurochemical basis of conditioned fear. Neurosci. Biobehav. Rev. 23, 743–760.10.1016/S0149-7634(99)00016-0Search in Google Scholar
Garcia, R., Vouimba, R.M., Baudry, M., and Thompson, R.F. (1999). The amygdala modulates prefrontal cortex activity relative to conditioned fear. Nature 402, 294–296.10.1038/46286Search in Google Scholar PubMed
Geller, I. and Seifter, J. (1960). The effects of meprobamate, barbiturates, d-amphetamine, and promazine on experimentally-induced conflict in the rat. Psychopharmacology 1, 482.10.1007/BF00429273Search in Google Scholar
Geller, I., Kulak, J.T. Jr., and Seifter, J. (1962). The effects of chlordiazepoxide and chlorpromazine on a punishment discrimination. Psychopharmacologia 3, 374–385.10.1007/BF00408322Search in Google Scholar
Gewirtz, J.C., McNish, K.A., and Davis, M. (2000). Is the hippocampus necessary for contextual fear conditioning? Behav. Brain Res. 110, 83–95.Search in Google Scholar
Glanzman, D.L., Mackey, S.L., Hawkins, R.D., and Dyke, A.M. (1989). Depletion of serotonin in the nervous system of Aplysia reduces the behavioral enhancement of gill withdrawal as well as the heterosynaptic facilitation produced by tail shock. J. Neurosci. 9, 4200–4213.10.1523/JNEUROSCI.09-12-04200.1989Search in Google Scholar
Goldstein, L.E., Rasmusson, A.M., Bunney, B.S., and Roth, R.H. (1996). Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat. J Neurosci. 16, 4787–4798.10.1523/JNEUROSCI.16-15-04787.1996Search in Google Scholar
Gonzales, C. and Chesselet, M.F. (1990). Amygdalonigral pathway: an anterograde study in the rat with phaseolus vulgaris leucoagglutinin (PHA-L). J. Comp. Neurol. 297, 182–200.10.1002/cne.902970203Search in Google Scholar
Goosens, K.A. and Maren, S (2001). Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats. Learn. Mem. 8, 148–155.10.1101/lm.37601Search in Google Scholar
Green, S. and Hodges, H. (1991). Animal models of anxiety. In: Behavioral models in Psychopharmacology, P. Willner, ed. (Cambridge: Cambridge University Press), pp. 21–49.Search in Google Scholar
Griebel, G. (1995). 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: more than 30 years of research. Pharmacol. Ther. 65, 319–395.10.1016/0163-7258(95)98597-JSearch in Google Scholar
Grillon, C., Morgan, C.A., Davis, M., and Southwick, S.M. (1998). Effects of experimental context and explicit threat cues on acoustic startle in Vietnam veterans with posttraumatic stress disorder. Biol. Psychiatry 44, 1027–1036.10.1016/S0006-3223(98)00034-1Search in Google Scholar
Gupta, R.R., Sen, S., Diepenhorst, L.L., Rudick, C.N., and Maren, S. (2001). Estrogen modulates sexually dimorphic contextual fear conditioning and hippocampal long-term potentiation (LTP) in rats. Brain Res. 888, 356–365.10.1016/S0006-8993(00)03116-4Search in Google Scholar
Hajós-Korcsok, E., Robinson, D.D., Yu, J.H., Fitch, C.S., Walker, E., and Merchant, K.M. (2003). Rapid habituation of hippocampal serotonin and norepinephrine release and anxiety-related behaviors, but not plasma corticosterone levels, to repeated foot shock stress in rats. Pharmacol. Biochem. Behav. 74, 609–616.10.1016/S0091-3057(02)01047-XSearch in Google Scholar
Halladay, L.R., Zelikowsky, M., Blair, H.T., and Fanselow, M.S. (2012). Reinstatement of extinguished fear by an unextinguished conditional stimulus. Front. Behav. Neurosci. 4, 6–18.10.3389/fnbeh.2012.00018Search in Google Scholar
Harvey, A.G., Jones, C., and Schmidt, D.A. (2003). Sleep and posttraumatic stress disorder: a review. Clin. Psychol. Rev. 23, 377–407.10.1016/S0272-7358(03)00032-1Search in Google Scholar
Hascoët, M. and Bourin, M (1997). Anticonflict effect of alpidem as compared with the benzodiazepine alprazolam in rats. Pharmacol. Biochem. Behav. 56, 317–324.10.1016/S0091-3057(96)00293-6Search in Google Scholar
Hascoët, M., Bourin, M., Todd, K.G., and Couetoux du, T.A. (1994). Anti-conflict effect of 5HT-1A agonists in rats: a new model for evaluating anxiolytic-like activity. J. Psychopharmacol. 8, 227–237.10.1177/026988119400800406Search in Google Scholar
Hawk, L.W., Dougall, A.L., Ursano, R.J., and Baum, A. (2000). Urinary catecholamines and recent onset posttraumatic stress disorder after motor vehicle accidents, Psychosom. Med. 62, 423–434.Search in Google Scholar
Heinsbroek, R.P., Feenstra, M.G., Boon, P., Van Haaren, F., and Van de Poll, N.E. (1988). Sex differences in passive avoidance depend on the integrity of the central serotonergic system. Pharmacol. Biochem. Behav. 31, 499–503.10.1016/0091-3057(88)90380-2Search in Google Scholar
Hijzen, T.H., Houtzager, S.W., Joordens, R.J., Olivier, B., and Slangen, J.L. (1995). Predictive validity of the potentiated startle response as a behavioral model for anxiolytic drugs. Psychopharmacology (Berl). 118, 150–154.10.1007/BF02245833Search in Google Scholar PubMed
Hikosaka, O. (2010). The habenula: from stress evasion to value-based decision-making. Nature Rev. Neurosci. 11, 503–513.10.1038/nrn2866Search in Google Scholar PubMed PubMed Central
Hitchcock, J.M. and Davis, M. (1991). Efferent pathway of the amygdala involved in conditioned fear as measured with the fear-potentiated startle paradigm. Behav. Neurosci. 105, 826–842.10.1037/0735-7044.105.6.826Search in Google Scholar
Hoffman, H.S. and Fleshler, M. (1962). A relay sequencing device for scrambling grid shock. J. Exp. Anal. Behav. 5, 329–330.10.1901/jeab.1962.5-329Search in Google Scholar PubMed PubMed Central
Hopkins, D.A. and Holstege, G. (1978) Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat. Exp. Brain Res. 32, 529–547.Search in Google Scholar
Huang, Y.H., Cheng, C.Y., Hong, C.J., and Tsai, S.J., (2004). Expression of c-Fos-like immunoreactivity in the brain of mice with learned helplessness. Neurosci. Lett. 363, 280–283.10.1016/j.neulet.2004.04.011Search in Google Scholar PubMed
Ilango, A., Shumake, J., Wetzel, W., Scheich, H., and Ohl, F.W. (2012). The role of dopamine in the context of aversive stimuli with particular reference to acoustically signaled avoidance learning. Front. Neurosci. 6, 132.10.3389/fnins.2012.00132Search in Google Scholar
Jelen, P., Soltysik, S., and Zagrodzka, J. (2003). 22-kHz ultrasonic vocalization in rats as an index of anxiety but not fear: behavioral and pharmacological modulation of affective state. Behav. Brain Res. 141, 63–72.10.1016/S0166-4328(02)00321-2Search in Google Scholar
Jenck, F., Moreau, J.L., and Martin, J.R. (1995). Dorsal periaqueductal gray-induced aversion as a simulation of panic anxiety: elements of face and predictive validity. Psychiatry Res. 57, 181–191.10.1016/0165-1781(95)02673-KSearch in Google Scholar
Ji, H. and Shepard, P.D. (2007). Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA(A) receptor-mediated mechanism. J. Neurosci. 27, 6923–6930.10.1523/JNEUROSCI.0958-07.2007Search in Google Scholar
Joordens, R.J., Hijzen, T.H., Peeters, B.W., and Olivier, B. (1996). Fear-potentiated startle response is remarkably similar in two laboratories. Psychopharmacology (Berl.) 126, 104–109.10.1007/BF02246344Search in Google Scholar
Kaltwasser, M.T. (1991). Acoustic startle induced ultrasonic vocalization in the rat: a novel animal model of anxiety? Behav. Brain Res. 43, 133–137.10.1016/S0166-4328(05)80063-4Search in Google Scholar
Kassai, F. and Gyertyán, I. (2012). Shock priming enhances the efficacy of SSRIs in the foot shock-induced ultrasonic vocalization test. Prog. Neuropsychopharmacol. Biol. Psychiatry 36, 128–135.Search in Google Scholar
Kim, J.J. and Jung, M.W. (2006). Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review. Neurosci. Biobehav. Rev. 30, 188–202.10.1016/j.neubiorev.2005.06.005Search in Google Scholar
Kimble, G.A. (1955). Shock intensity and avoidance learning. J. Comp. Physiol. Psychol. 48, 281–284.10.1037/h0047726Search in Google Scholar
Koolhaas, J.M., Hermann, P.M., Kemperman, C., Bohus, B., Van denHoofdakker, R.H., and Beersma, D.G.M. (1990). Single social defeat in male rats induces a gradual but long lasting behavioural change: a model of depression? Neurosci. Res. Commun. 7, 35–41.Search in Google Scholar
Kornstein, S.G., Schatzberg, A.F., Thase, M.E., Yonkers, K.A., McCullough, J.P., Keitner, G.I., Gelenberg, A.J., Davis, S.M., Harrison, W.M., and Keller, M.B. (2000). Gender differences in treatment response to sertraline versus imipramine in chronic depression. Am. J. Psychiatry 157, 1445–1452.10.1176/appi.ajp.157.9.1445Search in Google Scholar
Kuribara, H. and Asahi, T. (1997). Assessment of the anxiolytic and amnesic effects of three benzodiazepines, diazepam, alprazolam and triazolam, by conflict and non-matching to sample tests in mice. Nihon. Shinkei. Seishin. Yakurigaku. Zasshi 17, 1–6.Search in Google Scholar
Lamberty, Y., Falter, U., Gower, A.J., and Klitgaard, H. (2003). Anxiolytic profile of the antiepileptic drug levetiracetam in the Vogel conflict test in the rat. Eur. J. Pharmacol. 469, 97–102.10.1016/S0014-2999(03)01724-2Search in Google Scholar
Lecourtier, L. and Kelly, P.H. (2007). A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neurosci. Biobehav. Rev. 31, 658–672.10.1016/j.neubiorev.2007.01.004Search in Google Scholar
LeDoux, J.E. (1992). Brain mechanisms of emotion and emotional learning. Curr. Opin. Neurobiol. 2, 191–197.10.1016/0959-4388(92)90011-9Search in Google Scholar
LeDoux, J.E., Iwata, J., Cicchetti, P., and Reis, D.J. (1988). Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8, 2517–2529.10.1523/JNEUROSCI.08-07-02517.1988Search in Google Scholar
Levine, S. (1966). UCS intensity and avoidance learning. J. Exp. Psychol. 71, 163–164.10.1037/h0022690Search in Google Scholar
Li, B., Piriz, J., Mirrione, M., Chung, C., Proulx, C.D., Schulz, D., Henn, F., and Malinow, R. (2011). Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470, 535–539.10.1038/nature09742Search in Google Scholar
Li, Z., Zhou, Q., Li, L., Mao, R., Wang, M., Peng, W., Dong, Z., Xu, L., and Cao, J. (2005). Effects of unconditioned and conditioned aversive stimuli in an intense fear conditioning paradigm on synaptic plasticity in the hippocampal CA1 area in vivo. Hippocampus 15, 815–824.10.1002/hipo.20104Search in Google Scholar
Liberzon, I., Taylor, S.F., Amdur, R., Jung, T.D., Chamberlain, K.R., Minoshima, S., Koeppe R.A., and Fig, L.M. (1999). Brain activation in PTSD in response to trauma-related stimuli. Biol. Psychiatry 45, 817–826.10.1016/S0006-3223(98)00246-7Search in Google Scholar
Lindvall, O. and Bjorklund, A. (1984). General organization of cortical monoamine systems in Monoamine innervation of the cerebral cortex. In: L. Descarries, T.R. Reader, and H.H. Jasper, eds. (New York: Liss), pp. 9–40.Search in Google Scholar
Loiseau, F., Le Bihan, C., Hamon, M., and Thiébot, M.H. (2003). Distinct effects of diazepam and NK1 receptor antagonists in two conflict procedures in rats. Behav. Pharmacol. 14, 447–455.Search in Google Scholar
Louvart, H., Maccari, S., Lesage, J., Leonhardt, M., Dickes- Coopman, A., and Darnaudery, M., (2006). Effects of a single foot shock followed by situational reminders on HPA axis and behaviour in the aversive context in male and female rats. Psychoneuroendocrinol. 31, 92–99.10.1016/j.psyneuen.2005.05.014Search in Google Scholar PubMed
Louvart, H., Maccari, S., Lesage, J., Léonhardt, M., Dickes-Coopman, A., and Darnaudéry, M. (2005a). Effects of a single footshock followed by situational reminders on HPA axis and behaviour in the aversive context in male and female rats. Psychoneuroendocrinol. 31, 92–99.10.1016/j.psyneuen.2005.05.014Search in Google Scholar
Louvart, H., Maccari, S., Ducrocq, F., Thomas, P., and Darnaudery, M., (2005b). Long-term behavioural alterations in female rats after a single intense footshock followed by situational reminders. Psychoneuroendocrinol. 30, 316–324.10.1016/j.psyneuen.2004.09.003Search in Google Scholar PubMed
Maier, S.F. and Watkins, L.R. (2005). Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci. Biobehav. Rev. 29, 829–841.10.1016/j.neubiorev.2005.03.021Search in Google Scholar
Maren, S., De Oca, B., and Fanselow, M.S. (1994). Sex differences in hippocampal long-term potentiation (LTP) and Pavlovian fear conditioning in rats: positive correlation between LTP and contextual learning. Brain Res. 661, 25–34.10.1016/0006-8993(94)91176-2Search in Google Scholar
Maren, S. (2001). Neurobiology of Pavlovian fear conditioning. Annu. Rev. Neurosci. 24, 897–931.10.1146/annurev.neuro.24.1.897Search in Google Scholar
Marsden, W.N. (2013). Synaptic plasticity in depression: molecular, cellular and functional correlates. Prog. Neuropsychopharmacol. Biol. Psychiatry 43, 168–184.Search in Google Scholar
Martin, J.R., Moreau, J.L., Jenck, F., and Cumin, R. (1993). Acute and chronic administration of buspirone fails to yield anxiolytic-like effects in a mouse operant punishment paradigm. Pharmacol. Biochem. Behav. 46, 905–910.10.1016/0091-3057(93)90220-NSearch in Google Scholar
Mason, J.W. (1959). Plasma 17-hydroxycorticosteroid levels during electrical stimulation of the amygdaloid complex in conscious monkeys. Am. J. Physiol. 196, 44–48.10.1152/ajplegacy.1958.196.1.44Search in Google Scholar PubMed
Masterson, F.A. (1965). Equal aversion functions as predictors of instrumental responding. Unpublished doctoral dissertation. Princeton University.Search in Google Scholar
Masterson, F.A. (1969). Escape from noise. Psychol. Rep. 24, 484–486.10.2466/pr0.1969.24.2.484Search in Google Scholar PubMed
Masterson, F.A. (1970). Is termination of a warning signal an effective reward for rats? J. Comp. Phys. Psych. 72, 471–475.10.1037/h0029748Search in Google Scholar
Masterson, F.A. (1981). Suppression of the rat’s locomotor activity atlow intensities of electric foot shock. Behav. Res. Methods Instrumentation 13, 31–36.10.3758/BF03201868Search in Google Scholar
Masterson, F.A. and Campbell, B.A. (1972). Techniques of electric shock motivation. In: Methods in psychobiology, Vol. 2, R.D. Myers, ed. (New York: Academic Press).Search in Google Scholar
Matsumoto, M. and Hikosaka, O (2007). Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–1115.10.1038/nature05860Search in Google Scholar PubMed
McDannald, M.A. (2010). Contributions of the amygdala central nucleus and ventrolateral periaqueductal grey to freezing and instrumental suppression in Pavlovian fear conditioning. Behav Brain Res. 211, 111–117.10.1016/j.bbr.2010.03.020Search in Google Scholar PubMed PubMed Central
McKinney, W.T. (1988). Model of Mental Disorders: A New Comparative Psychiatry. (New York: Plenum).10.1007/978-1-4684-5430-7Search in Google Scholar
Mikics, E, Baranyi, J., and Haller, J. (2008). Rats exposed to traumatic stress bury unfamiliar objects–a novel measure of hyper-vigilance in PTSD models? Physiol. Behav. 94, 341–348.Search in Google Scholar
Millan, M.J. (1999). The induction of pain: an integrative review. Progr. Neurobiol. 57, 1–164.10.1016/S0301-0082(98)00048-3Search in Google Scholar
Mirrione, M.M., Schulz, D., Lapidus, K.A., Zhang, S., Goodman, W., and Henn, F.A. (2014). Increased metabolic activity in the septum and habenula during stress is linked to subsequent expression of learned helplessness behavior. Front. Hum. Neurosci. 8, 29.10.3389/fnhum.2014.00029Search in Google Scholar
Molewijk, H.E., van der Poel, A.M., Mos, J., van, der., Heyden, J.A., and Olivier, B. (1995). Conditioned ultrasonic distress vocalizations in adult male rats as a behavioural paradigm for screening anti-panic drugs. Psychopharmacology (Berl). 117, 32–40.10.1007/BF02245095Search in Google Scholar
Molina-Hernández, M. and Téllez-Alcántara, N.P. (2001). Estrus variation in anticonflict effects of midazolam microinjected into septal nuclei in female Wistar rats. Pharmacol. Biochem. Behav. 68, 531–537.10.1016/S0091-3057(01)00459-2Search in Google Scholar
Molina-Hernández, M., Téllez-Alcántara, N.P., Olivera-López, J.I., and Jaramillo, M.T. (2013). Estrous cycle variation in anxiolytic-like effects of topiramate in Wistar rats in two animal models of anxiety-like behavior. Pharmacol. Biochem. Behav. 103, 631–636.10.1016/j.pbb.2012.11.002Search in Google Scholar
Nelson, J.C. and Charney, D.S. (1981). The symptoms of major depressive illness. Am. J. Psychiatry 138, 1–13.10.1176/ajp.138.1.1Search in Google Scholar
O’Kelly, L.E. and Steckle, L.C. (1939). A note on longen during emotional responses in the rat. J. Psychol. 8, 125–131.10.1080/00223980.1939.9917655Search in Google Scholar
Overmier, J.B. and Seligman, M.E. (1967). Effects of inescapable shock upon subsequent escape and avoidance responding. J. Comp. Physiol. Psychol. 63, 28–33.10.1037/h0024166Search in Google Scholar
Palma, B.D., Suchecki, D., and Tufik, S. (2000). Differential effects of acute cold and footshock on the sleep of rats. Brain Res. 861, 97–104.10.1016/S0006-8993(00)02024-2Search in Google Scholar
Paterson, N.E. and Hanania, T. (2010). The modified Geller-Seifter test in rats was insensitive to GABA(B) receptor positive modulation or blockade, or 5-HT1A receptor activation. Behav. Brain Res. 208, 258–264.10.1016/j.bbr.2009.12.006Search in Google Scholar
Pavlov, P.I. (1927). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Ann. Neurosci. 17, 136–141.Search in Google Scholar
Pawlyk, A.C., Jha S.K., Brennan, F.X., Morrison, A.R., and Ross, R.J. (2005). A rodent model of sleep disturbances in posttraumatic stress disorder: the role of context after fear conditioning. Biol. Psychiatry 57, 268–277.10.1016/j.biopsych.2004.11.008Search in Google Scholar
Payne, J.D., Jackson, E.D., Hoscheidt, S., Ryan, L., Jacobs, W.J., and Nadel, L. (2007). Stress administered prior to encoding impairs neutral but enhances emotional long-term episodic memories. Learn. Mem. 14, 861–868.10.1101/lm.743507Search in Google Scholar
Pericic, D. and Pivac, N (1995). Sex differences in conflict behaviour and in plasma corticosterone levels. J. Neural. Transm. Gen. Sect. 101, 213–221.10.1007/BF01271558Search in Google Scholar
Petersen, E.N. and Lassen, J.B. (1981). A water lick conflict paradigm using drug experienced rats. Psychopharmacol. 75, 236–239.10.1007/BF00432430Search in Google Scholar
Phelps, E.A., O’Connor, K.J., Gatenby, J.C., Gore, J.C., Grillon, C., and Davis, M. (2001). Activation of the left amygdala to a cognitive representation of fear. Nat. Neurosci. 4, 437–441.10.1038/86110Search in Google Scholar
Philbert, J., Pichat, P., Beeské, S., Decobert, M., Belzung, C., and Griebel, G. (2011). Acute inescapable stress exposure induces long-term sleep disturbances and avoidance behavior: a mouse model of post-traumatic stress disorder (PTSD). Behav. Brain Res. 221, 149–154.10.1016/j.bbr.2011.02.039Search in Google Scholar
Philbert, J., Pichat, P., Palme, R., Belzung, C., and Griebel, G. (2012). The CRF1 receptor antagonist SSR125543 attenuates long-term cognitive deficit induced by acute inescapable stress in mice, independently from the hypothalamic pituitary adrenal axis. Pharmacol. Biochem. Behav. 102, 415–422.10.1016/j.pbb.2012.05.013Search in Google Scholar
Pissiota, A., Frans, O., Fernandez, M., von Knorring, L., Fischer, H., and Fredrikson, M. (2002). Neurofunctional correlates of posttraumatic stress disorder: a PET symptom provocation study. Eur. Arch. Psychiatry Clin. Neurosci. 252, 68–75.10.1007/s004060200014Search in Google Scholar
Plaznik, A., Jessa, M., Bidzinski, A., and Nazar, M. (1994). The effect of serotonin depletion and intra-hippocampal midazolam on rat behavior in the Vogel conflict test. Eur. J. Pharmacol. 257, 293–296.10.1016/0014-2999(94)90141-4Search in Google Scholar
Pollard, G.T. and Howard, J.C.L., (1989). Effects of drugs on punished behaviour: preclinical test for anxiolytics. Pharmacol. Ther. 45, 403–424.Search in Google Scholar
Polta, S.A., Fenzl, T., Jakubcakova, V., Kimura, M., Yassouridis, A., and Wotjak, C.T. (2013). Prognostic and symptomatic aspects of rapid eye movement sleep in a mouse model of posttraumatic stress disorder. Front. Behav. Neurosci. 7, 60.10.3389/fnbeh.2013.00060Search in Google Scholar
Prus, A.J., Hillhouse, T.M., and LaCrosse, A.L. (2014). Acute, but not repeated, administration of the neurotensin NTS1 receptor agonist PD149163 decreases conditioned footshock-induced ultrasonic vocalizations in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 49, 78–84.10.1016/j.pnpbp.2013.11.011Search in Google Scholar
Pryce, C.R., Lehmann, J., and Feldon, J. (1999). Effect of sex on fear conditioning is similar for context and discrete CS in Wistar, Lewis and Fischer rat strains. Pharmacol. Biochem. Behav. 64, 753–759.10.1016/S0091-3057(99)00147-1Search in Google Scholar
Pynoos, R.S., Ritzmann, R.F., Steinberg, A.M., Goenjian, A., and Prisecaru, I. (1996). A behavioral animal model of posttraumatic stress disorder featuring repeated exposure to situational reminders. Biol. Psychiatry. 39, 129–134.10.1016/0006-3223(95)00088-7Search in Google Scholar
Raps, C.S., Reinhard, K.E., and Seligman, M.E. (1980). Reversal of cognitive and affective deficits associated with depression and learned helplessness by mood elevation in patients. J. Abnorm. Psychol. 89, 342–349.10.1037/0021-843X.89.3.342Search in Google Scholar
Richter, C.P. (1950). Domestication of the Norway rat and its implications for the problem of stress. Assoc. Res. in Nerv and ment dis. Proc. 29, 19.Search in Google Scholar
Richter, S.H., Sartorius, A., Gass, P., and Vollmayr, B. (2014). A matter of timing: harm reduction in learned helplessness. Behav. Brain Funct. 10, 41.10.1186/1744-9081-10-41Search in Google Scholar
Richter-Levin, G. (1998). Acute and long-term behavioral correlates of underwater trauma–potential relevance to stress and post-stress syndromes. Psychiatry Res. 79, 73–83.10.1016/S0165-1781(98)00030-4Search in Google Scholar
Risbrough, V.B., Brodkin, J.D., and Geyer, M.A. (2003). GABA-A and 5-HT1A receptor agonists block expression of fear-potentiated startle in mice. Neuropsychopharmacol. 28, 654–663.10.1038/sj.npp.1300079Search in Google Scholar
Roberts, L.H. (1975). The rodent ultrasound production mechanism. Ultrasonics 13, 83–88.10.1016/0041-624X(75)90052-9Search in Google Scholar
Roozendaal, B., Koolhaas, J.M., and Bohus, B. (1991). Attenuated cardiovascular, endocrine and behavioral response after a single footshock in central amygdaloid lesioned male rats. Physiol. Behav. 50, 771–775.10.1016/0031-9384(91)90016-HSearch in Google Scholar
Rosen, J.B., Hitchcock, J.M., Miserendino, M.J., Falls, W.A., Campeau, S., and Davis, M. (1992). Lesions of the perirhinal cortex but not of the frontal, medial prefrontal, visual, or insular cortex block fear-potentiated startle using a visual conditioned stimulus. J. Neurosci. 12, 4624–4633.10.1523/JNEUROSCI.12-12-04624.1992Search in Google Scholar
Sánchez, C. (1993). Effect of serotonergic drugs on footshock-induced ultrasonic vocalization in adult male rats. Behav. Pharmacol. 4, 269–277.10.1097/00008877-199306000-00010Search in Google Scholar
Sánchez, C. (2003). Stress-induced vocalisation in adult animals. A valid model of anxiety? Eur. J. Pharmacol. 463, 133–143.Search in Google Scholar
Sánchez, C., Bergqvist, P.B.F., Brennum, L.T., Gupta, S., Hogg, S., Larsen, A.K., and Wiborg, O. (2003). Escitalopram, the S-(+)-enantiomer of citalopram, is an extremely selective serotonin reuptake inhibitor with potent antidepressant and anxiolytic activities. Psychopharmacology 167, 353–362.10.1007/s00213-002-1364-zSearch in Google Scholar PubMed
Sánchez, C. and Meier, E. (1997). Behavioral profiles of SSRIs in animal models of depression, anxiety and aggression. Are they all alike? Psychopharmacology (Berl.) 129, 197–205.10.1007/s002130050181Search in Google Scholar PubMed
Sanchis-Segura, C., Spanagel, R., Henn, F.A., and Vollmayr, B. (2005). Reduced sensitivity to sucrose in rats bred for helplessness: a study using the matching law. Behav. Pharmacol. 16, 267–270.10.1097/01.fbp.0000171772.61669.6fSearch in Google Scholar PubMed
Santha, P., Pákáski, M., Fodor, E.K., Fazekas, Ö C., Kálmán S, Kálmán J., Jr., Janka, Z., SZabó, G., and Kálmán J. (2013). Cytoskeletal Protein Translation and Expression in the Rat Brain Are Stressor-Dependent and Region-Specific. PLoS One 8, e73504.10.1371/journal.pone.0073504Search in Google Scholar PubMed PubMed Central
Sartorius, A., Kiening, K.L., Kirsch, P., von Gall, C.C., Haberkorn, U., Unterberg, A.W., Henn, F.A., and Meyer-Lindenberg, A. (2010). Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol. Psychiatry 67, e9–e11.10.1016/j.biopsych.2009.08.027Search in Google Scholar PubMed
Schefke, D.M., Fontana, D.J., and Commissaris, R.L. (1989). Anti-conflict efficacy of buspirone following acute versus chronic treatment. Psychopharmacology (Berl). 99, 427–429.10.1007/BF00445572Search in Google Scholar PubMed
Schreiber, R. and De Vry, J. (1993). 5-HT1A receptor ligands in animal models of anxiety, impulsivity and depression: multiple mechanisms of action? Prog. Neuro-Psychopharmacol. Biol. Psychiatry 17, 87–104.Search in Google Scholar
Sekino, Y., Kojima, N., and Shirao, T. (2007). Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem. Int. 51, 92–104.10.1016/j.neuint.2007.04.029Search in Google Scholar PubMed
Seligman, M.E. and Maier, S.F. (1967). Failure to escape traumatic shock. J. Exp. Psychol. 74, 1–9.10.1037/h0024514Search in Google Scholar PubMed
Seligman, M.E., Rosellini, R.A., and Kozak, M.J. (1975). Learned helplessness in the rat: time course, immunization, and reversibility. J. Comp. Physiol. Psychol. 88, 542–547.10.1037/h0076431Search in Google Scholar
Sherman, A.D., Allers, G.L., Petty, F., and Henn, F.A. (1979). A neuropharmacologically-relevant animal model of depression. Neuropharmacol. 18, 891–893.10.1016/0028-3908(79)90087-XSearch in Google Scholar
Sherman, A.D., Sacquitne, J.L., and Petty, F. (1982). Specificity of the learned helplessness model of depression. Pharmacol. Biochem. Behav. 16, 449–454.10.1016/0091-3057(82)90451-8Search in Google Scholar
Shimizu, H., Kumasaka, Y., Tanaka, H., Hirose, A., and Nakamura, M. (1992). Anticonflict action of tandospirone in a modified Geller–Seifter conflict test in rats. Jpn. J. Pharmacol. 58, 283–289.10.1016/S0021-5198(19)39739-2Search in Google Scholar
Shimizu, K., Kikuchi, A., Wakizono, T., Suzuki, G., Toda, H., Sawamura, T., Nibuya, M., Takahashi, Y., and Soichiro, N. (2006). An animal model of posttraumatic stress disorder in rats using a shuttle box. Nihon Shinkei Seishin Yakurigaku Zasshi 26, 93–99.Search in Google Scholar
Shimizu, K., Sawamura, T., Nibuya, M., Nakai, K., Takahashi, Y., and Nomura, S. (2004). An animal model of posttraumatic stress disorder and its validity: effect of paroxetine on a PTSD model in rats]. Nihon. Shinkei. Seishin. Yakurigaku Zasshi 24, 283–290.Search in Google Scholar
Shin, L.M., Shin, P.S., Heckers, S., Krangel, T.S., Macklin, M.L., Orr, S.P., Lasko, N., Segal, E., Makris, N., Richert, K., et al. (2004). Hippocampal function in posttraumatic stress disorder. Hippocampus 14, 292–300.10.1002/hipo.10183Search in Google Scholar PubMed
Shors, T.J., Seib, T.B., Levine, S., and Thompson, R.F. (1989). Inescapable versus escapable shock modulates long-term potentiation in the rat hippocampus. Science 244, 224–226.10.1126/science.2704997Search in Google Scholar PubMed
Shumake, J., Ilango, A., Scheich, H., Wetzel, W., and Ohl, F.W. (2010). Differential neuromodulation of acquisition and retrieval of avoidance learning by the lateral habenula and ventral tegmental area. J. Neurosci. 30, 5876–5883.10.1523/JNEUROSCI.3604-09.2010Search in Google Scholar PubMed PubMed Central
Siegmund, A. and Wotjak, C.T. (2007). A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear. J. Psychiatr. Res. 41, 848–860.10.1016/j.jpsychires.2006.07.017Search in Google Scholar PubMed
Silva, L.B. and Nobre, M.J. (2014). Impaired fear inhibitory properties of GABA(A) and μ opioid receptors of the dorsal periaqueductal grey in alcohol-withdrawn rats. Acta Neurobiol. Exp. (Wars). 74, 54–66.Search in Google Scholar
Sousa, N. and Almeida, O.F. (2012). Disconnection and reconnection: the morphological basis of (mal)adaptation to stress. Trends Neurosci. 35, 742–751.10.1016/j.tins.2012.08.006Search in Google Scholar PubMed
Spoormaker, V.I. and Montgomery, P. (2008). Disturbed sleep in post-traumatic stress disorder: secondary symptom or core feature? Sleep Med. Rev. 12, 169–184.10.1016/j.smrv.2007.08.008Search in Google Scholar PubMed
Steciuk, M., Kram, M., Kramer, G.L., and Petty, F. (1999). Decrease in stress-induced c-Fos-like immunoreactivity in the lateral septal nucleus of learned helpless rats. Brain Res. 822, 256–259.10.1016/S0006-8993(99)01134-8Search in Google Scholar
Steenbergen, H.L., Heinsbroek, R.P., Van Hest, A., and Van de Poll, N.E. (1990). Sex-dependent effects of inescapable shock administration on shuttlebox-escape performance and elevated plus-maze behavior. Physiol. Behav. 48, 571–576.10.1016/0031-9384(90)90302-KSearch in Google Scholar
Tanaka, M. (1999). Emotional stress and characteristics of brain noradrenaline release in the rat. Ind. Health 37, 143–156.10.2486/indhealth.37.143Search in Google Scholar
Tonoue, T., Ashida, Y., Makino, H., and Hata, H. (1986). Inhibition of shock-elicited ultrasonic vocalization by opioid peptides in the rat: a psychotropic effect. Psychoneuroendocrinol. 11, 177–184.10.1016/0306-4530(86)90052-1Search in Google Scholar
Treit, D. (1985). Animal models for the study of anti-anxiety agents: a review. Neurosci. Biobehav. Rev. 9, 203–222.10.1016/0149-7634(85)90046-6Search in Google Scholar
Umezu, T. (2000). Behavioral effects of plant-derived essential oils in the Geller type conflict test in mice. Jpn. J. Pharmacol. 83, 150–153.10.1016/S0021-5198(19)30610-9Search in Google Scholar
van de Kar, L.D., Piechowski, R.A., Rittenhouse, P.A., and Grey, T.S. (1991). Amygdaloid lesions: differential effect on conditioned stress and immobilization-induced increases in corticosterone and renin secretion. Neuroendocrinol. 54, 89–95.10.1159/000125856Search in Google Scholar
Van den Berg, C.L., Lamberts, R.R., Wolterink, G., Wiegant, V.M., and Van Ree, J.M. (1998). Emotional and footshock stimuli induce differential long-lasting behavioural effects in rats; involvement of opioids. Brain Res. 799, 6–15.10.1016/S0006-8993(98)00397-7Search in Google Scholar
Vazdarjanova, A. and McGaugh, J.L. (1998). Basolateral amygdala is not critical for cognitive memory of contextual fear conditioning. Proc. Natl. Acad. Sci. USA 95, 15003–15007.10.1073/pnas.95.25.15003Search in Google Scholar PubMed PubMed Central
Vogel, J.R., Beer, B., and Clody, D.E. (1971). A simple and reliable conflict procedure for testing anti-anxiety agents. Psychopharmacologia 21, 1–7.10.1007/BF00403989Search in Google Scholar PubMed
Vollmayr, B. and Henn, F.A. (2001). Learned helplessness in the rat: improvements in validity and reliability. Brain Res. Brain Res. Protoc. 8, 1–7.10.1016/S1385-299X(01)00067-8Search in Google Scholar
Vsan Haaren, F., van Hest, A., and Heinsbroek, R.P. (1990). Behavioral differences between male and female rats: effects of gonadal hormones on learning and memory. Neurosci. Biobehav. Rev. Spring 14, 23–33.10.1016/S0149-7634(05)80157-5Search in Google Scholar
Walker, D.L., Toufexis, D.J., and Davis, M. (2003). Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur. J. Pharmacol. 463, 199–216.10.1016/S0014-2999(03)01282-2Search in Google Scholar
Wang, B., Luo, F., Zhang, W., and Han, J. (2000). Stress or drug priming induces reinstatment of extinguished conditioned place preference. Neuroreport 11, 2781–2784.10.1097/00001756-200008210-00034Search in Google Scholar
Wang, W.F., Lei, Y.P., Tseng, T., Hsu, W.Y., Wang, C.F., Hsu, C.C., and Ho, Y.J. (2007). Effects of apomorphine on the expression of learned helplessness behavior. Chin. J. Physiol. 50, 63–68.Search in Google Scholar
Weinstock, M., Razin, M., Schorer-Apelbaum, D., Men, D., and McCarty, R. (1998). Gender differences in sympathoadrenal activity in rats at rest and in response to footshock stress. Int. J. Dev. Neurosci. 16, 289–295.10.1016/S0736-5748(98)00021-5Search in Google Scholar
Weiss, J.M. and Simson, P.G. (1986). Depression in an animal model: focus on the locus ceruleus. Ciba Found. Symp. 123, 191–215.Search in Google Scholar
Willner, P. (1986). Validation criteria for animal models of human mental disorders: learned helplessness as a paradigm case. Prog. Neuropsychopharmacol. Biol. Psychiatry 10, 677–690.10.1016/0278-5846(86)90051-5Search in Google Scholar
Winter, C., Vollmayr, B., Djodari-Irani, A., Klein, J., and Sartorius, A. (2011). Pharmacological inhibition of the lateral habenula improves depressive-like behavior in an animal model of treatment resistant depression. Behav. Brain Res. 216, 463–465.10.1016/j.bbr.2010.07.034Search in Google Scholar
Yehuda, R., Flory, J.D., Pratchett, L.C., Buxbaum, J., Ising, M., and Holsboer, F. (2010). Putative biological mechanisms for the association between early life adversity and the subsequent development of PTSD. Psychopharmacology (Berl.) 212, 405–417.10.1007/s00213-010-1969-6Search in Google Scholar
Yehuda, R., McFarlane, A.C., and Shalev, A.Y. (1998). Predicting the development of posttraumatic stress disorder from the acute response to a traumatic event. Biol. Psychiatry 44, 1305–1313.10.1016/S0006-3223(98)00276-5Search in Google Scholar
Yerkes, R.M. and Dodson, J.D. (1908). The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol. 18, 459–482.10.1002/cne.920180503Search in Google Scholar
©2015 by De Gruyter
Articles in the same Issue
- Frontmatter
- Magnetic resonance spectroscopy of the brain: a review of physical principles and technical methods
- The utility of fractal analysis in clinical neuroscience
- The importance of the negative blood-oxygenation-level-dependent (BOLD) response in the somatosensory cortex
- Electric foot shock stress: a useful tool in neuropsychiatric studies
- Tryptophan hydroxylase 2 in seasonal affective disorder: underestimated perspectives?
- Receptor for advanced glycation end-products in neurodegenerative diseases
- Phytochemical constituents as future antidepressants: a comprehensive review
- Spotting psychopaths using technology
Articles in the same Issue
- Frontmatter
- Magnetic resonance spectroscopy of the brain: a review of physical principles and technical methods
- The utility of fractal analysis in clinical neuroscience
- The importance of the negative blood-oxygenation-level-dependent (BOLD) response in the somatosensory cortex
- Electric foot shock stress: a useful tool in neuropsychiatric studies
- Tryptophan hydroxylase 2 in seasonal affective disorder: underestimated perspectives?
- Receptor for advanced glycation end-products in neurodegenerative diseases
- Phytochemical constituents as future antidepressants: a comprehensive review
- Spotting psychopaths using technology