Startseite Electric foot shock stress: a useful tool in neuropsychiatric studies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Electric foot shock stress: a useful tool in neuropsychiatric studies

  • Anjana Bali und Amteshwar Singh Jaggi EMAIL logo
Veröffentlicht/Copyright: 10. Juli 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Electric foot shock is a complex stressor with both physical and emotional components. It has been employed as an important tool to develop diverse animal models in the field of psychopharmacology. The electric foot shock paradigm includes acute or chronic exposures of shocks of varying intensity and duration on an electrified grid floor in an electric foot shock apparatus. Research evidence reveals that foot shocks of varying intensity produce behavioral and neurochemical changes reflecting depression, anxiety, and post-traumatic stress disorder (PTSD) in humans. Animals generally do not habituate to foot shocks in comparison to other stressors, including loud noise, bright light, and hot and cold temperatures. Additionally, it offers an experimental advantage of control over intensity and duration; therefore, by varying its application parameters, different disorder models have been created. Electric foot shock fear conditioning-induced ultrasonic vocalization and fear-potentiated startle have been explored to develop models of anxiety and panic. Similarly, fear conditioning in the form of foot shock exposure followed by situational reminders has been used to develop a model of PTSD. Electric foot shock-induced conflict has been explored to develop operant conflict models (Geller-Seifter and Vogel tests), which in turn are pharmacologically validated to screen potential anti-anxiety agents. Inescapable electric shock-induced ‘learned helplessness’ mimics the symptomology of depression, and this phenomenon has been employed to develop the model of depression. The present review describes the pharmacologically validated models of anxiety, depression, and PTSD involving electric foot shock as an aversive stimulus.


Corresponding author: Amteshwar Singh Jaggi, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India, e-mail:

Acknowledgments

The authors are grateful to Mr. Sumit Charaya and Ms. Kiran Bali, Clinical Psychologist, University of Birmingham, UK, for editing the original manuscript. The authors are thankful to the Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India, for supporting this study.

References

Abramson, L.Y., Seligman, M.E., and Teasdale, J.D. (1978). Learned helplessness in humans: critique and reformulation. J. Abnorm. Psychol. 87, 49–74.10.1037/0021-843X.87.1.49Suche in Google Scholar

Adamec, R.E. and Shallow, T. (1993). Lasting effects on rodent anxiety of a single exposure to a cat. Physiol. Behav. 54, 101–109.10.1016/0031-9384(93)90050-PSuche in Google Scholar

Agrawal, A., Jaggi, A.S., and Singh, N. (2011). Pharmacological investigations on adaptation in rats subjected to cold water immersion stress. Physiol. Behav. 103, 321–329.10.1016/j.physbeh.2011.02.014Suche in Google Scholar

Amano, M., Goto, A., Sakai, A., Achiha, M., Takahashi, N., Hara, C., and Ogawa, N. (1993). Comparison of the anticonflict effect of buspirone and its major metabolite 1-(2-pyrimidinyl)-piperazine (1-PP) in rats. Jpn. J. Pharmacol. 61, 311–317.10.1254/jjp.62.199Suche in Google Scholar

Amat, J., Baratta, M.V., Paul, E., Bland, S.T., Watkins, L.R., and Maier, S.F. (2005). Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat. Neurosci. 8, 365–371.10.1038/nn1399Suche in Google Scholar

Anagnostaras, S.G., Maren, S., and Fanselow, M.S. (1995). Scopolamine selectively disrupts the acquisition of contextual fear conditioning in rats. Neurobiol. Learn. Mem. 64, 191–194.10.1006/nlme.1995.0001Suche in Google Scholar

Anagnostaras, S.G., Maren, S., Sage, J.R., Goodrich, S., and Fanselow, M.S. (1999). Scopolamine and Pavlovian fear conditioning in rats: dose-effect analysis. Neuropsychopharmacol. 21, 731–744.10.1016/S0893-133X(99)00083-4Suche in Google Scholar

Antoniadis, E.A. and McDonald, R.J. (2006). Fornix, medial prefrontal cortex, nucleus accumbens, and mediodorsal thalamic nucleus: roles in a fear-based context discrimination task. Neurobiol. Learn. Mem. 85, 71–85.10.1016/j.nlm.2005.08.011Suche in Google Scholar

Aston-Jones, G., Ennis, M., Pieribone, V.A., Nickell, W.T., and Shipley, M.T. (1986). The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 234, 734–737.10.1126/science.3775363Suche in Google Scholar

Babbini, M., Gaiardi, M., and Bartoletti, M. (1982). Benzodiazepine effects upon Geller–Seifter conflict test in rats: analysis of individual variability. Pharmacol. Biochem. Behav. 17, 43–48.10.1016/0091-3057(82)90260-XSuche in Google Scholar

Baca, E., Garcia-Garcia, M., and Porras-Chavarino, A. (2004). Gender differences in treatment response to sertraline versus imipramine in patients with nonmelancholic depressive disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 28, 57–65.Suche in Google Scholar

Bali, A. and Jaggi, A.S. (2015). Electric foot shock stress adaptation: Does it exist or not? Life Sci. 130, 97–102.10.1016/j.lfs.2015.03.004Suche in Google Scholar

Basso, A.M., Gallagher, K.B., Mikusa, J.P., and Rueter, L.E. (2011). Vogel conflict test: sex differences and pharmacological validation of the model. Behav. Brain Res. 218, 174–183.10.1016/j.bbr.2010.11.041Suche in Google Scholar

Beatty, W.W. and Beatty, P.A. (1970). Hormonal determinants of sex differences in avoidance behavior and reactivity to electric shock in the rat. J. Comp. Physiol. Psychol. 73, 446–455.10.1037/h0030216Suche in Google Scholar

Beaufour, C.C., Balon, N., Le Bihan, C., Hamon, M., and Tiebot, M.H. (1999). Effects of chronic antidepressants in an operant conflict procedure of anxiety in the rat. Pharmacol. Biochem. Behav. 62, 591–599.10.1016/S0091-3057(98)00180-4Suche in Google Scholar

Biederman, G.B. and Furedy, J.J. (1973). Preference-for-signaled-shock phenomenon: Effects of shock modifiability and light reinforcement. J. Exp. Psychology 100, 380–386.10.1037/h0035529Suche in Google Scholar

Borsini, F., Podhorna, J., and Marazziti, D. (2002). Do animal models of anxiety predict anxiolytic-like effects of antidepressants? Psychopharmacology 163, 121–141.10.1007/s00213-002-1155-6Suche in Google Scholar

Brown, J.S., Kalish, H.I., and Farber, I.E. (1951). Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. J. Exp. Psychol. 41, 317–328.10.1037/h0060166Suche in Google Scholar

Campbell, B.A. and Masterson, F.A. (1969). Psychophysics of punishment. In: Punishment and aversive behavior, B.A. Campbell and R.M. Church, eds. (New York: AppletonCentury-Crofts).Suche in Google Scholar

Carrion, V.G., Weems, C.F., Ray, R.D., Glaser, B., Hessl, D., and Reiss, A.L. (2002). Diurnal salivary cortisol in pediatric posttraumatic stress disorder. Biol. Psychiatry 51, 575–582.10.1016/S0006-3223(01)01310-5Suche in Google Scholar

Chang, F.C. and Opp, M.R. (1998). Blockade of corticotropin-releasing hormone receptors reduces spontaneous waking in the rat. Am. J. Physiol. 275, R793–R802.10.1152/ajpregu.1998.275.3.R793Suche in Google Scholar PubMed

Chauhan, E., Bali, A., Singh, N., and Jaggi, A.S. (2015). Pharmacological investigations on cross adaptation in mice subjected to stress immobilization. Life Sci. 127, 98–105.10.1016/j.lfs.2015.02.015Suche in Google Scholar PubMed

Chourbaji, S., Zacher, C., Sanchis-Segura, C., Dormann, C., Vollmayr, B., and Gass, P. (2005). Learned helplessness: validity and reliability of depressive-like states in mice. Brain Res. Brain Res. Protoc. 16, 70–78.10.1016/j.brainresprot.2005.09.002Suche in Google Scholar

Chrapusta, S.J., Wyatt, R.J., and Masserano, J.M. (1997). Effects of single and repeated footshock on dopamine release and metabolism in the brains of Fischer rats. J. Neurochem. 68, 2024–2031.10.1046/j.1471-4159.1997.68052024.xSuche in Google Scholar

Christoffel, D.J., Golden, S.A., and Russo, S.J. (2011). Structural and synaptic plasticity in stress-related disorders. Rev. Neurosci. 22, 535–549.10.1515/RNS.2011.044Suche in Google Scholar

Clark, R.E. and Squire, L.R. (1998). Classical conditioning and brain systems: The role of awareness. Science 280, 77–81.10.1126/science.280.5360.77Suche in Google Scholar

Cohen, H., Benjamin, J., Kaplan, Z., and Kotler, M. (2000). Administration of high-doseketoconazole, an inhibitor of steroid synthesis, prevents post traumatic anxiety in an animal model. Eur. Neuropsychopharmacol. 10, 429–435.10.1016/S0924-977X(00)00105-XSuche in Google Scholar

Cohen, R.M., Cohen, M.R., and McLellan, C.A. (1986). Foot shock induces time and region specific adrenergic receptor changes in rat brain. Pharmacol. Biochem. Behav. 24, 1587–1592.10.1016/0091-3057(86)90490-9Suche in Google Scholar

Cohen, H. and Yehuda, R. (2011). Gender differences in animal models of posttraumatic stress disorder. Dis. Markers. 30, 141–150.10.1155/2011/734372Suche in Google Scholar

Cole, S. and McNally, G.P. (2008). Complementary roles for amygdala and periaqueductal gray in temporal-difference fear learning. Learn Mem. 16, 1–7.10.1101/lm.1120509Suche in Google Scholar PubMed

Corral-Frias, N.S., Lahood, R.P., Edelman-Vogelsang, K.E, French, E.D., and Fellous, J.M. (2013). Involvement of the ventral tegmental area in a rodent model of post-traumatic stress disorder. Neuropsychopharmacol. 38, 350–363.10.1038/npp.2012.189Suche in Google Scholar PubMed PubMed Central

Cui, R., Li, B., Suemaru, K., and Araki, H. (2007). Differential effects of psychological and physical stress on the sleep pattern in rats. Acta. Med. Okayama. 61, 319–327.Suche in Google Scholar

Dalla, C., Edgecomb, C., Whetstone, A.S., and Shors, T.J. (2008). Females do not express learned helplessness like males do. Neuropsychopharmacol. 33, 1559–1569.10.1038/sj.npp.1301533Suche in Google Scholar PubMed

Davis, M. (1992). The role of the amygdala in fear-potentiated startle: implications for animal models of anxiety. Trends Pharmacol. Sci. 13, 35–41.10.1016/0165-6147(92)90014-WSuche in Google Scholar

de Almeida, L.P., Ramos, P.L., Pandossio, J.E., Landeira-Fernandez, J., Zangrossi, H Jr., and Nogueira, R.L. (2006). Prior electrical stimulation of dorsal periaqueductal grey matter or deep layers of the superior colliculus sensitizes rats to anxiety-like behaviors in the elevated T-maze test. Behav. Brain Res. 170, 175–181.10.1016/j.bbr.2006.02.020Suche in Google Scholar

de Novellis, V., Marabese, I., Uliano, R., Palazzo, E., Scafuro, A., sca Rossi, F., and Maione, S. (2000). Type I and II metabotropic glutamate receptors modulate periaqueductal grey glycine release: interaction between mGlu2/3 and A1 adenosine receptors. Neuropharmacol. 43, 1061–1069.10.1016/S0028-3908(02)00227-7Suche in Google Scholar

De Oca, B.M., DeCola, J.P., Maren, S., and Fanselow, M.S. (1998). Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses. J. Neurosci. 18, 3426–3432.10.1523/JNEUROSCI.18-09-03426.1998Suche in Google Scholar

De Vry J., Benz, U., Schreiber, R., and Traber, J. (1993). Shock-induced ultrasonic vocalization in young adult rats: a model for testing putative anti-anxiety drugs. Eur. J. Pharmacol. 249, 331–339.10.1016/0014-2999(93)90530-USuche in Google Scholar

Deschaux, O., Zheng, X., Lavigne, J., Nachon, O., Cleren, C., Moreau, J.L., and Garcia, R. (2013). Post-extinction fluoxetine treatment prevents stress-induced reemergence of extinguished fear. Psychopharmacology (Berl.) 225, 209–216.10.1007/s00213-012-2806-xSuche in Google Scholar

Diagnostic and Statistical Manual of Mental Disorders, 4th edition, American Psychiatric Association, 1994.Suche in Google Scholar

Enkel, T., Spanagel, R., Vollmayr, B., and Schneider, M. (2010). Stress triggers anhedonia in rats bred for learned helplessness. Behav. Brain Res. 209, 183–186.10.1016/j.bbr.2010.01.042Suche in Google Scholar

Fendt, M. (2000). Expression and conditioned inhibition of fear-potentiated startle after stimulation and blockade of AMPA/Kainate and GABA(A) receptors in the dorsal periaqueductal gray. Brain Res. 880, 1–10.10.1016/S0006-8993(00)02665-2Suche in Google Scholar

Fendt, M. and Fanselow, M.S. (1999). The neuroanatomical and neurochemical basis of conditioned fear. Neurosci. Biobehav. Rev. 23, 743–760.10.1016/S0149-7634(99)00016-0Suche in Google Scholar

Garcia, R., Vouimba, R.M., Baudry, M., and Thompson, R.F. (1999). The amygdala modulates prefrontal cortex activity relative to conditioned fear. Nature 402, 294–296.10.1038/46286Suche in Google Scholar PubMed

Geller, I. and Seifter, J. (1960). The effects of meprobamate, barbiturates, d-amphetamine, and promazine on experimentally-induced conflict in the rat. Psychopharmacology 1, 482.10.1007/BF00429273Suche in Google Scholar

Geller, I., Kulak, J.T. Jr., and Seifter, J. (1962). The effects of chlordiazepoxide and chlorpromazine on a punishment discrimination. Psychopharmacologia 3, 374–385.10.1007/BF00408322Suche in Google Scholar

Gewirtz, J.C., McNish, K.A., and Davis, M. (2000). Is the hippocampus necessary for contextual fear conditioning? Behav. Brain Res. 110, 83–95.Suche in Google Scholar

Glanzman, D.L., Mackey, S.L., Hawkins, R.D., and Dyke, A.M. (1989). Depletion of serotonin in the nervous system of Aplysia reduces the behavioral enhancement of gill withdrawal as well as the heterosynaptic facilitation produced by tail shock. J. Neurosci. 9, 4200–4213.10.1523/JNEUROSCI.09-12-04200.1989Suche in Google Scholar

Goldstein, L.E., Rasmusson, A.M., Bunney, B.S., and Roth, R.H. (1996). Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat. J Neurosci. 16, 4787–4798.10.1523/JNEUROSCI.16-15-04787.1996Suche in Google Scholar

Gonzales, C. and Chesselet, M.F. (1990). Amygdalonigral pathway: an anterograde study in the rat with phaseolus vulgaris leucoagglutinin (PHA-L). J. Comp. Neurol. 297, 182–200.10.1002/cne.902970203Suche in Google Scholar

Goosens, K.A. and Maren, S (2001). Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats. Learn. Mem. 8, 148–155.10.1101/lm.37601Suche in Google Scholar

Green, S. and Hodges, H. (1991). Animal models of anxiety. In: Behavioral models in Psychopharmacology, P. Willner, ed. (Cambridge: Cambridge University Press), pp. 21–49.Suche in Google Scholar

Griebel, G. (1995). 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: more than 30 years of research. Pharmacol. Ther. 65, 319–395.10.1016/0163-7258(95)98597-JSuche in Google Scholar

Grillon, C., Morgan, C.A., Davis, M., and Southwick, S.M. (1998). Effects of experimental context and explicit threat cues on acoustic startle in Vietnam veterans with posttraumatic stress disorder. Biol. Psychiatry 44, 1027–1036.10.1016/S0006-3223(98)00034-1Suche in Google Scholar

Gupta, R.R., Sen, S., Diepenhorst, L.L., Rudick, C.N., and Maren, S. (2001). Estrogen modulates sexually dimorphic contextual fear conditioning and hippocampal long-term potentiation (LTP) in rats. Brain Res. 888, 356–365.10.1016/S0006-8993(00)03116-4Suche in Google Scholar

Hajós-Korcsok, E., Robinson, D.D., Yu, J.H., Fitch, C.S., Walker, E., and Merchant, K.M. (2003). Rapid habituation of hippocampal serotonin and norepinephrine release and anxiety-related behaviors, but not plasma corticosterone levels, to repeated foot shock stress in rats. Pharmacol. Biochem. Behav. 74, 609–616.10.1016/S0091-3057(02)01047-XSuche in Google Scholar

Halladay, L.R., Zelikowsky, M., Blair, H.T., and Fanselow, M.S. (2012). Reinstatement of extinguished fear by an unextinguished conditional stimulus. Front. Behav. Neurosci. 4, 6–18.10.3389/fnbeh.2012.00018Suche in Google Scholar

Harvey, A.G., Jones, C., and Schmidt, D.A. (2003). Sleep and posttraumatic stress disorder: a review. Clin. Psychol. Rev. 23, 377–407.10.1016/S0272-7358(03)00032-1Suche in Google Scholar

Hascoët, M. and Bourin, M (1997). Anticonflict effect of alpidem as compared with the benzodiazepine alprazolam in rats. Pharmacol. Biochem. Behav. 56, 317–324.10.1016/S0091-3057(96)00293-6Suche in Google Scholar

Hascoët, M., Bourin, M., Todd, K.G., and Couetoux du, T.A. (1994). Anti-conflict effect of 5HT-1A agonists in rats: a new model for evaluating anxiolytic-like activity. J. Psychopharmacol. 8, 227–237.10.1177/026988119400800406Suche in Google Scholar

Hawk, L.W., Dougall, A.L., Ursano, R.J., and Baum, A. (2000). Urinary catecholamines and recent onset posttraumatic stress disorder after motor vehicle accidents, Psychosom. Med. 62, 423–434.Suche in Google Scholar

Heinsbroek, R.P., Feenstra, M.G., Boon, P., Van Haaren, F., and Van de Poll, N.E. (1988). Sex differences in passive avoidance depend on the integrity of the central serotonergic system. Pharmacol. Biochem. Behav. 31, 499–503.10.1016/0091-3057(88)90380-2Suche in Google Scholar

Hijzen, T.H., Houtzager, S.W., Joordens, R.J., Olivier, B., and Slangen, J.L. (1995). Predictive validity of the potentiated startle response as a behavioral model for anxiolytic drugs. Psychopharmacology (Berl). 118, 150–154.10.1007/BF02245833Suche in Google Scholar PubMed

Hikosaka, O. (2010). The habenula: from stress evasion to value-based decision-making. Nature Rev. Neurosci. 11, 503–513.10.1038/nrn2866Suche in Google Scholar PubMed PubMed Central

Hitchcock, J.M. and Davis, M. (1991). Efferent pathway of the amygdala involved in conditioned fear as measured with the fear-potentiated startle paradigm. Behav. Neurosci. 105, 826–842.10.1037/0735-7044.105.6.826Suche in Google Scholar

Hoffman, H.S. and Fleshler, M. (1962). A relay sequencing device for scrambling grid shock. J. Exp. Anal. Behav. 5, 329–330.10.1901/jeab.1962.5-329Suche in Google Scholar PubMed PubMed Central

Hopkins, D.A. and Holstege, G. (1978) Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat. Exp. Brain Res. 32, 529–547.Suche in Google Scholar

Huang, Y.H., Cheng, C.Y., Hong, C.J., and Tsai, S.J., (2004). Expression of c-Fos-like immunoreactivity in the brain of mice with learned helplessness. Neurosci. Lett. 363, 280–283.10.1016/j.neulet.2004.04.011Suche in Google Scholar PubMed

Ilango, A., Shumake, J., Wetzel, W., Scheich, H., and Ohl, F.W. (2012). The role of dopamine in the context of aversive stimuli with particular reference to acoustically signaled avoidance learning. Front. Neurosci. 6, 132.10.3389/fnins.2012.00132Suche in Google Scholar

Jelen, P., Soltysik, S., and Zagrodzka, J. (2003). 22-kHz ultrasonic vocalization in rats as an index of anxiety but not fear: behavioral and pharmacological modulation of affective state. Behav. Brain Res. 141, 63–72.10.1016/S0166-4328(02)00321-2Suche in Google Scholar

Jenck, F., Moreau, J.L., and Martin, J.R. (1995). Dorsal periaqueductal gray-induced aversion as a simulation of panic anxiety: elements of face and predictive validity. Psychiatry Res. 57, 181–191.10.1016/0165-1781(95)02673-KSuche in Google Scholar

Ji, H. and Shepard, P.D. (2007). Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA(A) receptor-mediated mechanism. J. Neurosci. 27, 6923–6930.10.1523/JNEUROSCI.0958-07.2007Suche in Google Scholar

Joordens, R.J., Hijzen, T.H., Peeters, B.W., and Olivier, B. (1996). Fear-potentiated startle response is remarkably similar in two laboratories. Psychopharmacology (Berl.) 126, 104–109.10.1007/BF02246344Suche in Google Scholar

Kaltwasser, M.T. (1991). Acoustic startle induced ultrasonic vocalization in the rat: a novel animal model of anxiety? Behav. Brain Res. 43, 133–137.10.1016/S0166-4328(05)80063-4Suche in Google Scholar

Kassai, F. and Gyertyán, I. (2012). Shock priming enhances the efficacy of SSRIs in the foot shock-induced ultrasonic vocalization test. Prog. Neuropsychopharmacol. Biol. Psychiatry 36, 128–135.Suche in Google Scholar

Kim, J.J. and Jung, M.W. (2006). Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review. Neurosci. Biobehav. Rev. 30, 188–202.10.1016/j.neubiorev.2005.06.005Suche in Google Scholar

Kimble, G.A. (1955). Shock intensity and avoidance learning. J. Comp. Physiol. Psychol. 48, 281–284.10.1037/h0047726Suche in Google Scholar

Koolhaas, J.M., Hermann, P.M., Kemperman, C., Bohus, B., Van denHoofdakker, R.H., and Beersma, D.G.M. (1990). Single social defeat in male rats induces a gradual but long lasting behavioural change: a model of depression? Neurosci. Res. Commun. 7, 35–41.Suche in Google Scholar

Kornstein, S.G., Schatzberg, A.F., Thase, M.E., Yonkers, K.A., McCullough, J.P., Keitner, G.I., Gelenberg, A.J., Davis, S.M., Harrison, W.M., and Keller, M.B. (2000). Gender differences in treatment response to sertraline versus imipramine in chronic depression. Am. J. Psychiatry 157, 1445–1452.10.1176/appi.ajp.157.9.1445Suche in Google Scholar

Kuribara, H. and Asahi, T. (1997). Assessment of the anxiolytic and amnesic effects of three benzodiazepines, diazepam, alprazolam and triazolam, by conflict and non-matching to sample tests in mice. Nihon. Shinkei. Seishin. Yakurigaku. Zasshi 17, 1–6.Suche in Google Scholar

Lamberty, Y., Falter, U., Gower, A.J., and Klitgaard, H. (2003). Anxiolytic profile of the antiepileptic drug levetiracetam in the Vogel conflict test in the rat. Eur. J. Pharmacol. 469, 97–102.10.1016/S0014-2999(03)01724-2Suche in Google Scholar

Lecourtier, L. and Kelly, P.H. (2007). A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neurosci. Biobehav. Rev. 31, 658–672.10.1016/j.neubiorev.2007.01.004Suche in Google Scholar

LeDoux, J.E. (1992). Brain mechanisms of emotion and emotional learning. Curr. Opin. Neurobiol. 2, 191–197.10.1016/0959-4388(92)90011-9Suche in Google Scholar

LeDoux, J.E., Iwata, J., Cicchetti, P., and Reis, D.J. (1988). Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8, 2517–2529.10.1523/JNEUROSCI.08-07-02517.1988Suche in Google Scholar

Levine, S. (1966). UCS intensity and avoidance learning. J. Exp. Psychol. 71, 163–164.10.1037/h0022690Suche in Google Scholar

Li, B., Piriz, J., Mirrione, M., Chung, C., Proulx, C.D., Schulz, D., Henn, F., and Malinow, R. (2011). Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470, 535–539.10.1038/nature09742Suche in Google Scholar

Li, Z., Zhou, Q., Li, L., Mao, R., Wang, M., Peng, W., Dong, Z., Xu, L., and Cao, J. (2005). Effects of unconditioned and conditioned aversive stimuli in an intense fear conditioning paradigm on synaptic plasticity in the hippocampal CA1 area in vivo. Hippocampus 15, 815–824.10.1002/hipo.20104Suche in Google Scholar

Liberzon, I., Taylor, S.F., Amdur, R., Jung, T.D., Chamberlain, K.R., Minoshima, S., Koeppe R.A., and Fig, L.M. (1999). Brain activation in PTSD in response to trauma-related stimuli. Biol. Psychiatry 45, 817–826.10.1016/S0006-3223(98)00246-7Suche in Google Scholar

Lindvall, O. and Bjorklund, A. (1984). General organization of cortical monoamine systems in Monoamine innervation of the cerebral cortex. In: L. Descarries, T.R. Reader, and H.H. Jasper, eds. (New York: Liss), pp. 9–40.Suche in Google Scholar

Loiseau, F., Le Bihan, C., Hamon, M., and Thiébot, M.H. (2003). Distinct effects of diazepam and NK1 receptor antagonists in two conflict procedures in rats. Behav. Pharmacol. 14, 447–455.Suche in Google Scholar

Louvart, H., Maccari, S., Lesage, J., Leonhardt, M., Dickes- Coopman, A., and Darnaudery, M., (2006). Effects of a single foot shock followed by situational reminders on HPA axis and behaviour in the aversive context in male and female rats. Psychoneuroendocrinol. 31, 92–99.10.1016/j.psyneuen.2005.05.014Suche in Google Scholar PubMed

Louvart, H., Maccari, S., Lesage, J., Léonhardt, M., Dickes-Coopman, A., and Darnaudéry, M. (2005a). Effects of a single footshock followed by situational reminders on HPA axis and behaviour in the aversive context in male and female rats. Psychoneuroendocrinol. 31, 92–99.10.1016/j.psyneuen.2005.05.014Suche in Google Scholar

Louvart, H., Maccari, S., Ducrocq, F., Thomas, P., and Darnaudery, M., (2005b). Long-term behavioural alterations in female rats after a single intense footshock followed by situational reminders. Psychoneuroendocrinol. 30, 316–324.10.1016/j.psyneuen.2004.09.003Suche in Google Scholar PubMed

Maier, S.F. and Watkins, L.R. (2005). Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci. Biobehav. Rev. 29, 829–841.10.1016/j.neubiorev.2005.03.021Suche in Google Scholar

Maren, S., De Oca, B., and Fanselow, M.S. (1994). Sex differences in hippocampal long-term potentiation (LTP) and Pavlovian fear conditioning in rats: positive correlation between LTP and contextual learning. Brain Res. 661, 25–34.10.1016/0006-8993(94)91176-2Suche in Google Scholar

Maren, S. (2001). Neurobiology of Pavlovian fear conditioning. Annu. Rev. Neurosci. 24, 897–931.10.1146/annurev.neuro.24.1.897Suche in Google Scholar

Marsden, W.N. (2013). Synaptic plasticity in depression: molecular, cellular and functional correlates. Prog. Neuropsychopharmacol. Biol. Psychiatry 43, 168–184.Suche in Google Scholar

Martin, J.R., Moreau, J.L., Jenck, F., and Cumin, R. (1993). Acute and chronic administration of buspirone fails to yield anxiolytic-like effects in a mouse operant punishment paradigm. Pharmacol. Biochem. Behav. 46, 905–910.10.1016/0091-3057(93)90220-NSuche in Google Scholar

Mason, J.W. (1959). Plasma 17-hydroxycorticosteroid levels during electrical stimulation of the amygdaloid complex in conscious monkeys. Am. J. Physiol. 196, 44–48.10.1152/ajplegacy.1958.196.1.44Suche in Google Scholar PubMed

Masterson, F.A. (1965). Equal aversion functions as predictors of instrumental responding. Unpublished doctoral dissertation. Princeton University.Suche in Google Scholar

Masterson, F.A. (1969). Escape from noise. Psychol. Rep. 24, 484–486.10.2466/pr0.1969.24.2.484Suche in Google Scholar PubMed

Masterson, F.A. (1970). Is termination of a warning signal an effective reward for rats? J. Comp. Phys. Psych. 72, 471–475.10.1037/h0029748Suche in Google Scholar

Masterson, F.A. (1981). Suppression of the rat’s locomotor activity atlow intensities of electric foot shock. Behav. Res. Methods Instrumentation 13, 31–36.10.3758/BF03201868Suche in Google Scholar

Masterson, F.A. and Campbell, B.A. (1972). Techniques of electric shock motivation. In: Methods in psychobiology, Vol. 2, R.D. Myers, ed. (New York: Academic Press).Suche in Google Scholar

Matsumoto, M. and Hikosaka, O (2007). Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–1115.10.1038/nature05860Suche in Google Scholar PubMed

McDannald, M.A. (2010). Contributions of the amygdala central nucleus and ventrolateral periaqueductal grey to freezing and instrumental suppression in Pavlovian fear conditioning. Behav Brain Res. 211, 111–117.10.1016/j.bbr.2010.03.020Suche in Google Scholar PubMed PubMed Central

McKinney, W.T. (1988). Model of Mental Disorders: A New Comparative Psychiatry. (New York: Plenum).10.1007/978-1-4684-5430-7Suche in Google Scholar

Mikics, E, Baranyi, J., and Haller, J. (2008). Rats exposed to traumatic stress bury unfamiliar objects–a novel measure of hyper-vigilance in PTSD models? Physiol. Behav. 94, 341–348.Suche in Google Scholar

Millan, M.J. (1999). The induction of pain: an integrative review. Progr. Neurobiol. 57, 1–164.10.1016/S0301-0082(98)00048-3Suche in Google Scholar

Mirrione, M.M., Schulz, D., Lapidus, K.A., Zhang, S., Goodman, W., and Henn, F.A. (2014). Increased metabolic activity in the septum and habenula during stress is linked to subsequent expression of learned helplessness behavior. Front. Hum. Neurosci. 8, 29.10.3389/fnhum.2014.00029Suche in Google Scholar

Molewijk, H.E., van der Poel, A.M., Mos, J., van, der., Heyden, J.A., and Olivier, B. (1995). Conditioned ultrasonic distress vocalizations in adult male rats as a behavioural paradigm for screening anti-panic drugs. Psychopharmacology (Berl). 117, 32–40.10.1007/BF02245095Suche in Google Scholar

Molina-Hernández, M. and Téllez-Alcántara, N.P. (2001). Estrus variation in anticonflict effects of midazolam microinjected into septal nuclei in female Wistar rats. Pharmacol. Biochem. Behav. 68, 531–537.10.1016/S0091-3057(01)00459-2Suche in Google Scholar

Molina-Hernández, M., Téllez-Alcántara, N.P., Olivera-López, J.I., and Jaramillo, M.T. (2013). Estrous cycle variation in anxiolytic-like effects of topiramate in Wistar rats in two animal models of anxiety-like behavior. Pharmacol. Biochem. Behav. 103, 631–636.10.1016/j.pbb.2012.11.002Suche in Google Scholar

Nelson, J.C. and Charney, D.S. (1981). The symptoms of major depressive illness. Am. J. Psychiatry 138, 1–13.10.1176/ajp.138.1.1Suche in Google Scholar

O’Kelly, L.E. and Steckle, L.C. (1939). A note on longen during emotional responses in the rat. J. Psychol. 8, 125–131.10.1080/00223980.1939.9917655Suche in Google Scholar

Overmier, J.B. and Seligman, M.E. (1967). Effects of inescapable shock upon subsequent escape and avoidance responding. J. Comp. Physiol. Psychol. 63, 28–33.10.1037/h0024166Suche in Google Scholar

Palma, B.D., Suchecki, D., and Tufik, S. (2000). Differential effects of acute cold and footshock on the sleep of rats. Brain Res. 861, 97–104.10.1016/S0006-8993(00)02024-2Suche in Google Scholar

Paterson, N.E. and Hanania, T. (2010). The modified Geller-Seifter test in rats was insensitive to GABA(B) receptor positive modulation or blockade, or 5-HT1A receptor activation. Behav. Brain Res. 208, 258–264.10.1016/j.bbr.2009.12.006Suche in Google Scholar

Pavlov, P.I. (1927). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Ann. Neurosci. 17, 136–141.Suche in Google Scholar

Pawlyk, A.C., Jha S.K., Brennan, F.X., Morrison, A.R., and Ross, R.J. (2005). A rodent model of sleep disturbances in posttraumatic stress disorder: the role of context after fear conditioning. Biol. Psychiatry 57, 268–277.10.1016/j.biopsych.2004.11.008Suche in Google Scholar

Payne, J.D., Jackson, E.D., Hoscheidt, S., Ryan, L., Jacobs, W.J., and Nadel, L. (2007). Stress administered prior to encoding impairs neutral but enhances emotional long-term episodic memories. Learn. Mem. 14, 861–868.10.1101/lm.743507Suche in Google Scholar

Pericic, D. and Pivac, N (1995). Sex differences in conflict behaviour and in plasma corticosterone levels. J. Neural. Transm. Gen. Sect. 101, 213–221.10.1007/BF01271558Suche in Google Scholar

Petersen, E.N. and Lassen, J.B. (1981). A water lick conflict paradigm using drug experienced rats. Psychopharmacol. 75, 236–239.10.1007/BF00432430Suche in Google Scholar

Phelps, E.A., O’Connor, K.J., Gatenby, J.C., Gore, J.C., Grillon, C., and Davis, M. (2001). Activation of the left amygdala to a cognitive representation of fear. Nat. Neurosci. 4, 437–441.10.1038/86110Suche in Google Scholar

Philbert, J., Pichat, P., Beeské, S., Decobert, M., Belzung, C., and Griebel, G. (2011). Acute inescapable stress exposure induces long-term sleep disturbances and avoidance behavior: a mouse model of post-traumatic stress disorder (PTSD). Behav. Brain Res. 221, 149–154.10.1016/j.bbr.2011.02.039Suche in Google Scholar

Philbert, J., Pichat, P., Palme, R., Belzung, C., and Griebel, G. (2012). The CRF1 receptor antagonist SSR125543 attenuates long-term cognitive deficit induced by acute inescapable stress in mice, independently from the hypothalamic pituitary adrenal axis. Pharmacol. Biochem. Behav. 102, 415–422.10.1016/j.pbb.2012.05.013Suche in Google Scholar

Pissiota, A., Frans, O., Fernandez, M., von Knorring, L., Fischer, H., and Fredrikson, M. (2002). Neurofunctional correlates of posttraumatic stress disorder: a PET symptom provocation study. Eur. Arch. Psychiatry Clin. Neurosci. 252, 68–75.10.1007/s004060200014Suche in Google Scholar

Plaznik, A., Jessa, M., Bidzinski, A., and Nazar, M. (1994). The effect of serotonin depletion and intra-hippocampal midazolam on rat behavior in the Vogel conflict test. Eur. J. Pharmacol. 257, 293–296.10.1016/0014-2999(94)90141-4Suche in Google Scholar

Pollard, G.T. and Howard, J.C.L., (1989). Effects of drugs on punished behaviour: preclinical test for anxiolytics. Pharmacol. Ther. 45, 403–424.Suche in Google Scholar

Polta, S.A., Fenzl, T., Jakubcakova, V., Kimura, M., Yassouridis, A., and Wotjak, C.T. (2013). Prognostic and symptomatic aspects of rapid eye movement sleep in a mouse model of posttraumatic stress disorder. Front. Behav. Neurosci. 7, 60.10.3389/fnbeh.2013.00060Suche in Google Scholar

Prus, A.J., Hillhouse, T.M., and LaCrosse, A.L. (2014). Acute, but not repeated, administration of the neurotensin NTS1 receptor agonist PD149163 decreases conditioned footshock-induced ultrasonic vocalizations in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 49, 78–84.10.1016/j.pnpbp.2013.11.011Suche in Google Scholar

Pryce, C.R., Lehmann, J., and Feldon, J. (1999). Effect of sex on fear conditioning is similar for context and discrete CS in Wistar, Lewis and Fischer rat strains. Pharmacol. Biochem. Behav. 64, 753–759.10.1016/S0091-3057(99)00147-1Suche in Google Scholar

Pynoos, R.S., Ritzmann, R.F., Steinberg, A.M., Goenjian, A., and Prisecaru, I. (1996). A behavioral animal model of posttraumatic stress disorder featuring repeated exposure to situational reminders. Biol. Psychiatry. 39, 129–134.10.1016/0006-3223(95)00088-7Suche in Google Scholar

Raps, C.S., Reinhard, K.E., and Seligman, M.E. (1980). Reversal of cognitive and affective deficits associated with depression and learned helplessness by mood elevation in patients. J. Abnorm. Psychol. 89, 342–349.10.1037/0021-843X.89.3.342Suche in Google Scholar

Richter, C.P. (1950). Domestication of the Norway rat and its implications for the problem of stress. Assoc. Res. in Nerv and ment dis. Proc. 29, 19.Suche in Google Scholar

Richter, S.H., Sartorius, A., Gass, P., and Vollmayr, B. (2014). A matter of timing: harm reduction in learned helplessness. Behav. Brain Funct. 10, 41.10.1186/1744-9081-10-41Suche in Google Scholar

Richter-Levin, G. (1998). Acute and long-term behavioral correlates of underwater trauma–potential relevance to stress and post-stress syndromes. Psychiatry Res. 79, 73–83.10.1016/S0165-1781(98)00030-4Suche in Google Scholar

Risbrough, V.B., Brodkin, J.D., and Geyer, M.A. (2003). GABA-A and 5-HT1A receptor agonists block expression of fear-potentiated startle in mice. Neuropsychopharmacol. 28, 654–663.10.1038/sj.npp.1300079Suche in Google Scholar

Roberts, L.H. (1975). The rodent ultrasound production mechanism. Ultrasonics 13, 83–88.10.1016/0041-624X(75)90052-9Suche in Google Scholar

Roozendaal, B., Koolhaas, J.M., and Bohus, B. (1991). Attenuated cardiovascular, endocrine and behavioral response after a single footshock in central amygdaloid lesioned male rats. Physiol. Behav. 50, 771–775.10.1016/0031-9384(91)90016-HSuche in Google Scholar

Rosen, J.B., Hitchcock, J.M., Miserendino, M.J., Falls, W.A., Campeau, S., and Davis, M. (1992). Lesions of the perirhinal cortex but not of the frontal, medial prefrontal, visual, or insular cortex block fear-potentiated startle using a visual conditioned stimulus. J. Neurosci. 12, 4624–4633.10.1523/JNEUROSCI.12-12-04624.1992Suche in Google Scholar

Sánchez, C. (1993). Effect of serotonergic drugs on footshock-induced ultrasonic vocalization in adult male rats. Behav. Pharmacol. 4, 269–277.10.1097/00008877-199306000-00010Suche in Google Scholar

Sánchez, C. (2003). Stress-induced vocalisation in adult animals. A valid model of anxiety? Eur. J. Pharmacol. 463, 133–143.Suche in Google Scholar

Sánchez, C., Bergqvist, P.B.F., Brennum, L.T., Gupta, S., Hogg, S., Larsen, A.K., and Wiborg, O. (2003). Escitalopram, the S-(+)-enantiomer of citalopram, is an extremely selective serotonin reuptake inhibitor with potent antidepressant and anxiolytic activities. Psychopharmacology 167, 353–362.10.1007/s00213-002-1364-zSuche in Google Scholar PubMed

Sánchez, C. and Meier, E. (1997). Behavioral profiles of SSRIs in animal models of depression, anxiety and aggression. Are they all alike? Psychopharmacology (Berl.) 129, 197–205.10.1007/s002130050181Suche in Google Scholar PubMed

Sanchis-Segura, C., Spanagel, R., Henn, F.A., and Vollmayr, B. (2005). Reduced sensitivity to sucrose in rats bred for helplessness: a study using the matching law. Behav. Pharmacol. 16, 267–270.10.1097/01.fbp.0000171772.61669.6fSuche in Google Scholar PubMed

Santha, P., Pákáski, M., Fodor, E.K., Fazekas, Ö C., Kálmán S, Kálmán J., Jr., Janka, Z., SZabó, G., and Kálmán J. (2013). Cytoskeletal Protein Translation and Expression in the Rat Brain Are Stressor-Dependent and Region-Specific. PLoS One 8, e73504.10.1371/journal.pone.0073504Suche in Google Scholar PubMed PubMed Central

Sartorius, A., Kiening, K.L., Kirsch, P., von Gall, C.C., Haberkorn, U., Unterberg, A.W., Henn, F.A., and Meyer-Lindenberg, A. (2010). Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol. Psychiatry 67, e9–e11.10.1016/j.biopsych.2009.08.027Suche in Google Scholar PubMed

Schefke, D.M., Fontana, D.J., and Commissaris, R.L. (1989). Anti-conflict efficacy of buspirone following acute versus chronic treatment. Psychopharmacology (Berl). 99, 427–429.10.1007/BF00445572Suche in Google Scholar PubMed

Schreiber, R. and De Vry, J. (1993). 5-HT1A receptor ligands in animal models of anxiety, impulsivity and depression: multiple mechanisms of action? Prog. Neuro-Psychopharmacol. Biol. Psychiatry 17, 87–104.Suche in Google Scholar

Sekino, Y., Kojima, N., and Shirao, T. (2007). Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem. Int. 51, 92–104.10.1016/j.neuint.2007.04.029Suche in Google Scholar PubMed

Seligman, M.E. and Maier, S.F. (1967). Failure to escape traumatic shock. J. Exp. Psychol. 74, 1–9.10.1037/h0024514Suche in Google Scholar PubMed

Seligman, M.E., Rosellini, R.A., and Kozak, M.J. (1975). Learned helplessness in the rat: time course, immunization, and reversibility. J. Comp. Physiol. Psychol. 88, 542–547.10.1037/h0076431Suche in Google Scholar

Sherman, A.D., Allers, G.L., Petty, F., and Henn, F.A. (1979). A neuropharmacologically-relevant animal model of depression. Neuropharmacol. 18, 891–893.10.1016/0028-3908(79)90087-XSuche in Google Scholar

Sherman, A.D., Sacquitne, J.L., and Petty, F. (1982). Specificity of the learned helplessness model of depression. Pharmacol. Biochem. Behav. 16, 449–454.10.1016/0091-3057(82)90451-8Suche in Google Scholar

Shimizu, H., Kumasaka, Y., Tanaka, H., Hirose, A., and Nakamura, M. (1992). Anticonflict action of tandospirone in a modified Geller–Seifter conflict test in rats. Jpn. J. Pharmacol. 58, 283–289.10.1016/S0021-5198(19)39739-2Suche in Google Scholar

Shimizu, K., Kikuchi, A., Wakizono, T., Suzuki, G., Toda, H., Sawamura, T., Nibuya, M., Takahashi, Y., and Soichiro, N. (2006). An animal model of posttraumatic stress disorder in rats using a shuttle box. Nihon Shinkei Seishin Yakurigaku Zasshi 26, 93–99.Suche in Google Scholar

Shimizu, K., Sawamura, T., Nibuya, M., Nakai, K., Takahashi, Y., and Nomura, S. (2004). An animal model of posttraumatic stress disorder and its validity: effect of paroxetine on a PTSD model in rats]. Nihon. Shinkei. Seishin. Yakurigaku Zasshi 24, 283–290.Suche in Google Scholar

Shin, L.M., Shin, P.S., Heckers, S., Krangel, T.S., Macklin, M.L., Orr, S.P., Lasko, N., Segal, E., Makris, N., Richert, K., et al. (2004). Hippocampal function in posttraumatic stress disorder. Hippocampus 14, 292–300.10.1002/hipo.10183Suche in Google Scholar PubMed

Shors, T.J., Seib, T.B., Levine, S., and Thompson, R.F. (1989). Inescapable versus escapable shock modulates long-term potentiation in the rat hippocampus. Science 244, 224–226.10.1126/science.2704997Suche in Google Scholar PubMed

Shumake, J., Ilango, A., Scheich, H., Wetzel, W., and Ohl, F.W. (2010). Differential neuromodulation of acquisition and retrieval of avoidance learning by the lateral habenula and ventral tegmental area. J. Neurosci. 30, 5876–5883.10.1523/JNEUROSCI.3604-09.2010Suche in Google Scholar PubMed PubMed Central

Siegmund, A. and Wotjak, C.T. (2007). A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear. J. Psychiatr. Res. 41, 848–860.10.1016/j.jpsychires.2006.07.017Suche in Google Scholar PubMed

Silva, L.B. and Nobre, M.J. (2014). Impaired fear inhibitory properties of GABA(A) and μ opioid receptors of the dorsal periaqueductal grey in alcohol-withdrawn rats. Acta Neurobiol. Exp. (Wars). 74, 54–66.Suche in Google Scholar

Sousa, N. and Almeida, O.F. (2012). Disconnection and reconnection: the morphological basis of (mal)adaptation to stress. Trends Neurosci. 35, 742–751.10.1016/j.tins.2012.08.006Suche in Google Scholar PubMed

Spoormaker, V.I. and Montgomery, P. (2008). Disturbed sleep in post-traumatic stress disorder: secondary symptom or core feature? Sleep Med. Rev. 12, 169–184.10.1016/j.smrv.2007.08.008Suche in Google Scholar PubMed

Steciuk, M., Kram, M., Kramer, G.L., and Petty, F. (1999). Decrease in stress-induced c-Fos-like immunoreactivity in the lateral septal nucleus of learned helpless rats. Brain Res. 822, 256–259.10.1016/S0006-8993(99)01134-8Suche in Google Scholar

Steenbergen, H.L., Heinsbroek, R.P., Van Hest, A., and Van de Poll, N.E. (1990). Sex-dependent effects of inescapable shock administration on shuttlebox-escape performance and elevated plus-maze behavior. Physiol. Behav. 48, 571–576.10.1016/0031-9384(90)90302-KSuche in Google Scholar

Tanaka, M. (1999). Emotional stress and characteristics of brain noradrenaline release in the rat. Ind. Health 37, 143–156.10.2486/indhealth.37.143Suche in Google Scholar

Tonoue, T., Ashida, Y., Makino, H., and Hata, H. (1986). Inhibition of shock-elicited ultrasonic vocalization by opioid peptides in the rat: a psychotropic effect. Psychoneuroendocrinol. 11, 177–184.10.1016/0306-4530(86)90052-1Suche in Google Scholar

Treit, D. (1985). Animal models for the study of anti-anxiety agents: a review. Neurosci. Biobehav. Rev. 9, 203–222.10.1016/0149-7634(85)90046-6Suche in Google Scholar

Umezu, T. (2000). Behavioral effects of plant-derived essential oils in the Geller type conflict test in mice. Jpn. J. Pharmacol. 83, 150–153.10.1016/S0021-5198(19)30610-9Suche in Google Scholar

van de Kar, L.D., Piechowski, R.A., Rittenhouse, P.A., and Grey, T.S. (1991). Amygdaloid lesions: differential effect on conditioned stress and immobilization-induced increases in corticosterone and renin secretion. Neuroendocrinol. 54, 89–95.10.1159/000125856Suche in Google Scholar

Van den Berg, C.L., Lamberts, R.R., Wolterink, G., Wiegant, V.M., and Van Ree, J.M. (1998). Emotional and footshock stimuli induce differential long-lasting behavioural effects in rats; involvement of opioids. Brain Res. 799, 6–15.10.1016/S0006-8993(98)00397-7Suche in Google Scholar

Vazdarjanova, A. and McGaugh, J.L. (1998). Basolateral amygdala is not critical for cognitive memory of contextual fear conditioning. Proc. Natl. Acad. Sci. USA 95, 15003–15007.10.1073/pnas.95.25.15003Suche in Google Scholar PubMed PubMed Central

Vogel, J.R., Beer, B., and Clody, D.E. (1971). A simple and reliable conflict procedure for testing anti-anxiety agents. Psychopharmacologia 21, 1–7.10.1007/BF00403989Suche in Google Scholar PubMed

Vollmayr, B. and Henn, F.A. (2001). Learned helplessness in the rat: improvements in validity and reliability. Brain Res. Brain Res. Protoc. 8, 1–7.10.1016/S1385-299X(01)00067-8Suche in Google Scholar

Vsan Haaren, F., van Hest, A., and Heinsbroek, R.P. (1990). Behavioral differences between male and female rats: effects of gonadal hormones on learning and memory. Neurosci. Biobehav. Rev. Spring 14, 23–33.10.1016/S0149-7634(05)80157-5Suche in Google Scholar

Walker, D.L., Toufexis, D.J., and Davis, M. (2003). Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur. J. Pharmacol. 463, 199–216.10.1016/S0014-2999(03)01282-2Suche in Google Scholar

Wang, B., Luo, F., Zhang, W., and Han, J. (2000). Stress or drug priming induces reinstatment of extinguished conditioned place preference. Neuroreport 11, 2781–2784.10.1097/00001756-200008210-00034Suche in Google Scholar

Wang, W.F., Lei, Y.P., Tseng, T., Hsu, W.Y., Wang, C.F., Hsu, C.C., and Ho, Y.J. (2007). Effects of apomorphine on the expression of learned helplessness behavior. Chin. J. Physiol. 50, 63–68.Suche in Google Scholar

Weinstock, M., Razin, M., Schorer-Apelbaum, D., Men, D., and McCarty, R. (1998). Gender differences in sympathoadrenal activity in rats at rest and in response to footshock stress. Int. J. Dev. Neurosci. 16, 289–295.10.1016/S0736-5748(98)00021-5Suche in Google Scholar

Weiss, J.M. and Simson, P.G. (1986). Depression in an animal model: focus on the locus ceruleus. Ciba Found. Symp. 123, 191–215.Suche in Google Scholar

Willner, P. (1986). Validation criteria for animal models of human mental disorders: learned helplessness as a paradigm case. Prog. Neuropsychopharmacol. Biol. Psychiatry 10, 677–690.10.1016/0278-5846(86)90051-5Suche in Google Scholar

Winter, C., Vollmayr, B., Djodari-Irani, A., Klein, J., and Sartorius, A. (2011). Pharmacological inhibition of the lateral habenula improves depressive-like behavior in an animal model of treatment resistant depression. Behav. Brain Res. 216, 463–465.10.1016/j.bbr.2010.07.034Suche in Google Scholar

Yehuda, R., Flory, J.D., Pratchett, L.C., Buxbaum, J., Ising, M., and Holsboer, F. (2010). Putative biological mechanisms for the association between early life adversity and the subsequent development of PTSD. Psychopharmacology (Berl.) 212, 405–417.10.1007/s00213-010-1969-6Suche in Google Scholar

Yehuda, R., McFarlane, A.C., and Shalev, A.Y. (1998). Predicting the development of posttraumatic stress disorder from the acute response to a traumatic event. Biol. Psychiatry 44, 1305–1313.10.1016/S0006-3223(98)00276-5Suche in Google Scholar

Yerkes, R.M. and Dodson, J.D. (1908). The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol. 18, 459–482.10.1002/cne.920180503Suche in Google Scholar

Received: 2015-4-10
Accepted: 2015-6-3
Published Online: 2015-7-10
Published in Print: 2015-12-1

©2015 by De Gruyter

Heruntergeladen am 1.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2015-0015/html
Button zum nach oben scrollen