Abstract
For the past three and a half decades, the Psychopathy Checklist-Revised (PCL-R) and the self-report Psychopathic Personality Inventory-Revised (PPI-R) have been the standard measures for the diagnosis of psychopathy. Technological approaches can enhance these diagnostic methodologies. The purpose of this paper is to present a state-of-the-art review of various technological approaches for spotting psychopathy, such as electroencephalogram (EEG), magnetic resonance imaging (MRI), functional MRI (fMRI), transcranial magnetic stimulation (TMS), and other measures. Results of EEG event-related potential (ERP) experiments support the theory that impaired amygdala function may be responsible for abnormal fear processing in psychopathy, which can ultimately manifest as psychopathic traits, as outlined by the PCL-R or PPI-R. Imaging studies, in general, point to reduced fear processing capabilities in psychopathic individuals. While the human element, introduced through researcher/participant interactions, can be argued as unequivocally necessary for diagnosis, these purely objective technological approaches have proven to be useful in conjunction with the subjective interviewing and questionnaire methods for differentiating psychopaths from non-psychopaths. Furthermore, these technologies are more robust than behavioral measures, which have been shown to fail.
References
Adeli, H. and Ghosh-Dastidar, S. (2010). Automated EEG-based Diagnosis of Neurological Disorders – Inventing the Future of Neurology (Boca Raton, FL: CRC Press, Taylor & Francis).10.1201/9781439815328Search in Google Scholar
Adeli, H. and Hung, S.L. (1995). Machine Learning – Neural Networks, Genetic Algorithms, and Fuzzy Systems (New York: John Wiley and Sons).Search in Google Scholar
Adeli, H., Ghosh-Dastidar, S., and Dadmehr, N. (2005a). Alzheimer’s disease and models of computation: Imaging, classification, and neural models. J. Alzheimers Dis. 7, 187–199.10.3233/JAD-2005-7301Search in Google Scholar
Adeli, H., Ghosh-Dastidar, S., and Dadmehr, N. (2005b). Alzheimer’s disease: models of computation and analysis of EEGs. Clin. EEG Neurosci. 36, 131–140.10.1177/155005940503600303Search in Google Scholar PubMed
Adeli, H., Ghosh-Dastidar, S., and Dadmehr, N. (2007). A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy. IEEE Trans. Biomed. Eng. 54, 205–211.10.1109/TBME.2006.886855Search in Google Scholar PubMed
Adeli, H., Ghosh-Dastidar, S., and Dadmehr, N. (2008). A spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer’s disease. Neurosci. Lett. 444, 190–194.10.1016/j.neulet.2008.08.008Search in Google Scholar PubMed
Ahmadlou, M. and Adeli, H. (2010). Wavelet-Synchronization Methodology: a new approach for EEG-based diagnosis of ADHD. Clin. EEG Neurosci. 41, 1–10.10.1177/155005941004100103Search in Google Scholar PubMed
Ahmadlou, M. and Adeli, H. (2011). Fuzzy synchronization likelihood with application to attention-deficit/hyperactivity disorder. Clin. EEG Neurosci. 42, 6–13.10.1177/155005941104200105Search in Google Scholar PubMed
Ahmadlou, M., Adeli, H., and, Adeli, A. (2010a). Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder. J. Clin. Neurophysiol. 27, 328–333.10.1097/WNP.0b013e3181f40dc8Search in Google Scholar PubMed
Ahmadlou, M., Adeli, H., and Adeli, A. (2010b). New diagnostic EEG markers of the Alzheimer’s disease using visibility graph. J. Neural Transm. 117, 1099–1109.10.1007/s00702-010-0450-3Search in Google Scholar PubMed
Ahmadlou, M., Adeli, H., and Adeli, A. (2011). Fractality and a wavelet-chaos-methodology for EEG-based diagnosis of Alzheimer disease. Alzheimer Dis. Assoc. Dis. 25, 85–92.10.1097/WAD.0b013e3181ed1160Search in Google Scholar PubMed
Ahmadlou, M., Adeli, H., and Adeli, A. (2012). Fractality analysis of frontal brain in major depressive disorder. Int. J. Psychophysiol. 85, 206–211.10.1016/j.ijpsycho.2012.05.001Search in Google Scholar PubMed
Ahmadlou, M., Adeli, H., and Adeli, A. (2013). Spatiotemporal analysis of relative convergence of EEGs reveals differences between brain dynamics of depressive women and men. Clin. EEG Neurosci. 44, 175–181.10.1177/1550059413480504Search in Google Scholar PubMed
Almeida, P.R., Ferreira-Santos, F., Vieira, J.B., Moreira, P.S., Barbosa, F., and Marques-Teixeira, J. (2014). Dissociable effects of psychopathic traits on cortical and subcortical visual pathways during facial emotion processing: an ERP study on the N170. Psychophysiology 51, 645–657.10.1111/psyp.12209Search in Google Scholar PubMed
Andershed, H., Hodgins, S., and Tengstrom, A. (2007). Convergent validity of the Youth Psychopathic Traits Inventory (YPI) – association with the psychopathy checklist: youth version (PCL YV). Assessment 14, 144–154.10.1177/1073191106298286Search in Google Scholar PubMed
Anderson, N.E. and Stanford, M.S. (2012). Demonstrating emotional processing differences in psychopathy using affective ERP modulation. Psychophysiology 49, 792–806.10.1111/j.1469-8986.2012.01369.xSearch in Google Scholar PubMed
Badawy, R.A.B., Jackson, G.D., Berkovic, S.F., and Macdonell, R.A.L. (2013). Cortical excitability and refractory epilepsy: a three-year longitudinal transcranial magnetic stimulation study. Int. J. Neural Syst. 23, 1250030.10.1142/S012906571250030XSearch in Google Scholar PubMed
Baskin-Sommers, A.R., Curtin, J.J., and Newman, J.P. (2011). Specifying the attentional selection that moderates the fearlessness of psychopathic offenders. Psychol. Sci. 22, 226–234.10.1177/0956797610396227Search in Google Scholar PubMed PubMed Central
Bauer, P.R., Kalitzin, S., Zijlmans, M., Sander, J.W., and Visser, G.H. (2014). Cortical excitability as a potential clinical marker of epilepsy: a review of the clinical application of transcranial magnetic stimulation. Int. J. Neural Syst. 24, 1430001.10.1142/S0129065714300010Search in Google Scholar PubMed
Benning, S.D., Patrick, C.J., Hicks, B.M., Blonigen, D.M., and Krueger, R.F. (2003). Factor structure of the psychopathic personality inventory: validity and implications for clinical assessment. Psychol. Assess. 15, 340–350.10.1037/1040-3590.15.3.340Search in Google Scholar PubMed
Bhat, S., Acharya, U.R., Adeli, H., Bairy, G.M., and Adeli, A. (2014a). Autism: cause factors, early diagnosis and therapies. Rev. Neuroscience. 25, 841–850.10.1515/revneuro-2014-0056Search in Google Scholar PubMed
Bhat, S., Acharya, U.R., Adeli, H., Muralidhar Bairy, G.M., and Adeli, A. (2014b). Automated diagnosis of autism: in search of mathematical markers. Rev. Neuroscience. 25, 408–415.10.1515/revneuro-2014-0036Search in Google Scholar
Bjork, J.M., Chen, G., and Hommer, D.W. (2012). Psychopathic tendencies and mesolimbic recruitment by cues for instrumental and passively obtained rewards. Biol. Psychol. 89, 408–415.10.1016/j.biopsycho.2011.12.003Search in Google Scholar
Blair, R.J.R. (2013). The neurobiology of psychopathic traits in youths. Nat. Rev. Neurosci. 14, 786–799.10.1038/nrn3577Search in Google Scholar
Brazil, I.A., Mars, R.B., Bulten, B.H., Buitelaar, J.K., Verkes, R.J., and De Bruijn, E.R.A. (2011). A neurophysiological dissociation between monitoring one’s own and others’ actions in psychopathy. Biol. Psychiat. 69, 693–699.10.1016/j.biopsych.2010.11.013Search in Google Scholar
Calzada-Reyes, A., Alvarez-Amador, A., Galan-Garcia, L., and Valdes-Sosa, M. (2013). EEG abnormalities in psychopath and non-psychopath violent offenders. J. Forensic Leg. Med. 20, 19–26.10.1016/j.jflm.2012.04.027Search in Google Scholar
Carlson, S.R., Thai, S., and McLarnon, M.E. (2009). Visual P3 amplitude and self-reported psychopathic personality traits: frontal reduction is associated with self-centered impulsivity. Psychophysiology 46, 100–113.10.1111/j.1469-8986.2008.00756.xSearch in Google Scholar
Carolan, P.L., Jaspers-Fayer, F., Asmaro, D.T., Douglas, K.S., and Liotti, M. (2014). Electrophysiology of blunted emotional bias in psychopathic personality. Psychophysiology 51, 36–41.10.1111/psyp.12145Search in Google Scholar
Cheng, Y.W., Hung, A.Y., and Decety, J. (2012). Dissociation between affective sharing and emotion understanding in juvenile psychopaths. Dev. Psychopathol. 24, 623–636.10.1017/S095457941200020XSearch in Google Scholar
Cohn, M.D., Veltman, D.J., Pape, L.K., van Lith, K., Vermeiren, R.R.J.M., van den Brink, W., Doreleijers, T.A.H., and Popma, A. (2014). Incentive processing in persistent disruptive behavior and psychopathic traits: a functional magnetic resonance imaging study in adolescents. Biol. Pyschiatry. In press.Search in Google Scholar
Contreras-Rodríguez, O., Pujol, J., Batalla, I., Harrison, B.J., Soriano-Mas, C., Deus, J., López-Solà, M., Macià, D., Pera, V., Hernández-Ribas, R., et al. (2014). Functional connectivity bias in the prefrontal cortex of psychopaths. Biol. Pyschiatry. In press.Search in Google Scholar
Craig, M.C., Catani, M., Deeley, Q., Latham, R., Daly, E., Kanaan. R., Picchioni, M., McGuire, P.K., Fahy, T., and Murphy, D.G.M. (2009). Altered connections on the road to psychopathy. Mol. Psychiatry 14, 946–953.10.1038/mp.2009.40Search in Google Scholar
Davis, M., Falls, W.A., Campeau, S., and Kim, M. (1993). Fear-Potentiated Startle – a neural and pharmacological analysis. Behav. Brain Res. 58, 175–198.10.1016/0166-4328(93)90102-VSearch in Google Scholar
Falkenstein, M., Hoormann, J., and Hohnsbein, J. (1999). ERP components in Go Nogo tasks and their relation to inhibition. Acta Psychol. 101, 267–291.10.1016/S0001-6918(99)00008-6Search in Google Scholar
Fecteau, S., Pascual-Leone, A., and Theoret, H. (2008). Psychopathy and the mirror neuron system: preliminary findings from a non-psychiatric sample. Psychiatry Res. 160, 137–144.10.1016/j.psychres.2007.08.022Search in Google Scholar
Ghosh-Dastidar, S. and Adeli, H. (2007). Improved spiking neural networks for EEG classification and epilepsy and seizure detection. Integr. Comput.-Aid. E. 14, 187–212.10.3233/ICA-2007-14301Search in Google Scholar
Ghosh-Dastidar, S. and Adeli, H. (2009). A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection. Neural Netw. 22, 1419–1431.10.1016/j.neunet.2009.04.003Search in Google Scholar
Goncalves, N., Nikkila, J., and Vigario, R. (2014), Self-Supervised mri tissue segmentation by discriminative clustering. Int. J. Neural Syst. 24, 1450004.10.1142/S012906571450004XSearch in Google Scholar
Hare, R.D. (1996). Psychopathy – a clinical construct whose time has come. Crim. Justice Behav. 23, 25–54.10.1177/0093854896023001004Search in Google Scholar
Hare, R.D. (1998). The Hare PCL-R: Some issues concerning its use and misuse. Legal Criminol. Psych. 3, 99–119.10.1111/j.2044-8333.1998.tb00353.xSearch in Google Scholar
Hoppenbrouwers, S.S., De Jesus, D.R., Sun, Y.M., Stirpe, T., Hofman, D., McMaster, J., Hughes, G., Daskalakis, Z.J., and Schutter, D.J.L.G. (2014). Abnormal interhemispheric connectivity in male psychopathic offenders. J. Psychiatry Neurosci. 39, 22–30.10.1503/jpn.120046Search in Google Scholar
Hulbert, S. and Adeli, H. (2013). EEG/MEG- and imaging- based diagnosis of Alzheimer’s disease. Rev. Neurosci. 24, 563–576.10.1515/revneuro-2013-0042Search in Google Scholar
Huss, M.T. and Langhinrichsen-Rohling, J. (2000). Identification of the psychopathic batterer: fhe clinical, legal, and policy implications. Aggress. Violent Behav. 5, 403–422.10.1016/S1359-1789(98)00038-XSearch in Google Scholar
Juarez, M., Kiehl, K.A., and Calhoun, V.D. (2013). Intrinsic limbic and paralimbic networks are associated with criminal psychopathy. Hum. Brain Mapp. 34, 1921–1930.10.1002/hbm.22037Search in Google Scholar PubMed PubMed Central
Kim, Y.Y. and Jung, Y.S. (2014). Reduced frontal activity during response inhibition in individuals with psychopathic traits: An sLORETA study. Biol. Psychol. 97, 49–59.10.1016/j.biopsycho.2014.02.004Search in Google Scholar PubMed
Kimiskidis, V.K., Kugiumtzis, D., Papagiannopoulos, S., and Vlaikidis, N. (2013). Transcranial magnetic stimulation (TMS) modulates epileptiform discharges in patients with partial epilepsy: a combined EEG–TMS study. Int. J. Neural Syst. 23, 1250035.10.1142/S0129065712500359Search in Google Scholar PubMed
Larson, C.L., Baskin-Sommers, A.R., Stout, D.M., Balderston, N.L., Curtin, J.J., Schultz, D.H., Kiehl, K.A., and Newman, J.P. (2013). The interplay of attention and emotion: top-down attention modulates amygdala activation in psychopathy. Cogn. Affect. Behav. Neurosci. 13, 757–770.10.3758/s13415-013-0172-8Search in Google Scholar PubMed PubMed Central
Li, D., Xu, L., Goodman, E., Xu, Y., and Wu, Y. (2013). Integrating a statistical background-foreground extraction algorithm and SVM classifier for pedestrian detection and tracking. Integr. Comput.-Aid. E. 20, 201–216.10.3233/ICA-130428Search in Google Scholar
Lilienfeld, S.O. and Andrews, B.P. (1996). Development and preliminary validation of a self-report measure of psychopathic personality traits in noncriminal populations. J. Pers. Assess. 66, 488–524.10.1207/s15327752jpa6603_3Search in Google Scholar PubMed
Marsh, A.A. and Cardinale, E.M. (2014). When psychopathy impairs moral judgments: neural responses during judgments about causing fear. Soc. Cogn. Affect. Neurosci. 9, 3–11.10.1093/scan/nss097Search in Google Scholar PubMed PubMed Central
Meffert, H., Gazzola, V., den Boer, J.A., Bartels, A.A.J., and Keysers, C. (2013). Reduced spontaneous but relatively normal deliberate vicarious representations in psychopathy. Brain 136, 2550–2562.10.1093/brain/awt190Search in Google Scholar PubMed PubMed Central
Morabito, F.C., Campolo, M., Labate, D., Morabito, G., Bonanno, L., Bramanti, A., de Salvo, S., Marra A., and Bramanti, P. (2015). A longitudinal EEG study of Alzheimer’s disease progression based on a complex network approach. Int. J. Neural Syst., 25, 1550005.10.1142/S0129065715500057Search in Google Scholar PubMed
Motzkin, J.C., Newman, J.P., Kiehl, K.A., and Koenigs, M. (2011). Reduced prefrontal connectivity in psychopathy. J. Neurosci. 31, 17348–17357.10.1523/JNEUROSCI.4215-11.2011Search in Google Scholar PubMed PubMed Central
Munro, G.E.S., Dywan, J., Harris, S., Unsal, A., and Segalowitz, S.J. (2007). Response inhibition in psychopathy: the frontal N2 and P3. Neurosci. Lett. 418, 149–153.10.1016/j.neulet.2007.03.017Search in Google Scholar PubMed
Neumann, C.S., Kosson, D.S., Forth, A.E., and Hare, R.D. (2006). Factor structure of the hare psychopathy checklist: Youth version (PCL: YV) in incarcerated adolescents. Psychol. Assess. 18, 142–154.10.1037/1040-3590.18.2.142Search in Google Scholar PubMed
Newman, J.P., Curtin, J.J., Bertsch, J.D., and Baskin-Sommers, A.R. (2010). Attention moderates the fearlessness of psychopathic offenders. Bio. Psychiatry 67, 66–70.10.1016/j.biopsych.2009.07.035Search in Google Scholar PubMed PubMed Central
Parazzini, M., Fiocchi, S., Liorni, I., Priori, A., and Ravazzani, P. (2014). Computational modeling of transcranial direct current stimulation in the child brain: implications for the treatment of refractory childhood focal epilepsy. Int. J. Neural Syst. 24, 1430006.10.1142/S012906571430006XSearch in Google Scholar PubMed
Patel, S.H. and Azzam, P.N. (2005). Characterization of N200 and P300: selected studies of the event-related potential. Integr. Comput.-Aid. E. 21, 163–175.10.7150/ijms.2.147Search in Google Scholar PubMed PubMed Central
Perez, G., Conci, A., Moreno, A.B., and Hernandez-Tamames, J.A. (2014). Rician noise attenuation in the wavelet packet transformed domain for brain MRI. Integr. Comput.-Aid. E. 21, 163–175.10.3233/ICA-130457Search in Google Scholar
Piaggi, P., Menicucci, D., Gentili, C., Handjaras, G., Gemignani, A., and Landi, A. (2014). Singular spectrum analysis and adaptive filtering enhance the functional connectivity analysis of resting state FMRI data. Int. J. Neural Syst. 24, 1450010.10.1142/S0129065714500105Search in Google Scholar PubMed
Polich, J. (2007). Updating p300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 118, 2128–2148.10.1016/j.clinph.2007.04.019Search in Google Scholar PubMed PubMed Central
Rangaprakash, D., Hu, X.P., and Deshpande, G. (2013). Phase synchronization in brain networks derived from correlation between probabilities of recurrences in functional MRI data. Int. J. Neural Syst. 23, 1350003.10.1142/S0129065713500032Search in Google Scholar PubMed
Rizzolatti, G. and Craighero, L. (2004). The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192.10.1146/annurev.neuro.27.070203.144230Search in Google Scholar PubMed
Rothemund, Y., Ziegler, S., Hermann, C., Gruesser, S.M., Foell, J., Patrick, C.J., and Flor, H. (2012). Fear conditioning in psychopaths: event-related potentials and peripheral measures. Biol. Psychol. 90, 50–59.10.1016/j.biopsycho.2012.02.011Search in Google Scholar
Sankari, Z. and Adeli, H. (2011). Probabilistic neural networks for EEG-based diagnosis of Alzheimer’s disease using conventional and wavelet coherence. J. Neurosci. 197, 165–170.Search in Google Scholar
Sethi, A., Gregory, S., Dell’Acqua, P., Thomas, E.P., Simmons, A., Murphy, D.G.M., Hodgins, S., Blackwood, N.J., and Craig, M.C. (2015). Emotional detachment in psychopathy: involvement of dorsal default-mode connections. Cortex 62, 11–19.10.1016/j.cortex.2014.07.018Search in Google Scholar
Sharma, P., Khan, Y.U., Farooq, O., Tripathi, M., and Adeli, H. (2014). A wavelet-statistical features approach for nonconvulsive seizure detection. Clin. EEG Neurosci. 45, 274–284.10.1177/1550059414535465Search in Google Scholar
Siddique, N. and Adeli, H. (2013). Computational Intelligence – Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing (West Sussex: Wiley).10.1002/9781118534823Search in Google Scholar
Taylor, M.J., Itier, R.J., Allison, T., and Edmonds, G.E. (2001). Direction of gaze effects on early face processing: eyes-only versus full faces. Cogn. Brain Res. 10, 333–340.10.1016/S0926-6410(00)00051-3Search in Google Scholar
Venables, N.C. and Patrick, C.J. (2014). Reconciling discrepant findings for P3 brain response in criminal psychopathy through reference to the concept of externalizing proneness. Psychophysiology 51, 427–436.10.1111/psyp.12189Search in Google Scholar PubMed PubMed Central
Williams, J.M.G., Mathews, A., and MacLeod, C. (1996). The emotional stroop task and psychopathology. Psychol. Bull. 120, 3–24.10.1037/0033-2909.120.1.3Search in Google Scholar PubMed
Yoder, K.J. and Decety, J. (2014). Spatiotemporal neural dynamics of moral judgment: a high-density ERP study. Neuropsychologia 60, 39–45.10.1016/j.neuropsychologia.2014.05.022Search in Google Scholar PubMed PubMed Central
©2015 by De Gruyter
Articles in the same Issue
- Frontmatter
- Magnetic resonance spectroscopy of the brain: a review of physical principles and technical methods
- The utility of fractal analysis in clinical neuroscience
- The importance of the negative blood-oxygenation-level-dependent (BOLD) response in the somatosensory cortex
- Electric foot shock stress: a useful tool in neuropsychiatric studies
- Tryptophan hydroxylase 2 in seasonal affective disorder: underestimated perspectives?
- Receptor for advanced glycation end-products in neurodegenerative diseases
- Phytochemical constituents as future antidepressants: a comprehensive review
- Spotting psychopaths using technology
Articles in the same Issue
- Frontmatter
- Magnetic resonance spectroscopy of the brain: a review of physical principles and technical methods
- The utility of fractal analysis in clinical neuroscience
- The importance of the negative blood-oxygenation-level-dependent (BOLD) response in the somatosensory cortex
- Electric foot shock stress: a useful tool in neuropsychiatric studies
- Tryptophan hydroxylase 2 in seasonal affective disorder: underestimated perspectives?
- Receptor for advanced glycation end-products in neurodegenerative diseases
- Phytochemical constituents as future antidepressants: a comprehensive review
- Spotting psychopaths using technology