Startseite Green synthesis of MnFe2O4 nanoparticles using Elaeis guineensis Jacq. leaves and empty fruit bunches extract and its radiolabeling with 99mTc as a potential agent for dual-modality imaging SPECT/MRI
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Green synthesis of MnFe2O4 nanoparticles using Elaeis guineensis Jacq. leaves and empty fruit bunches extract and its radiolabeling with 99mTc as a potential agent for dual-modality imaging SPECT/MRI

  • Amal Rezka Putra ORCID logo , Muhammad Dzaki Fadhlurrohman , Miftakul Munir ORCID logo , Sumandi Juliyanto ORCID logo , Ahsanal Fikri , Ilma Darojatin , Wening Lestari , Veronika Y. Susilo , Alfian Mahardika Forentin , Muhamad Basit Febrian , Andi Arjuna , Nuri Jannati Wahyu Ekaningsih , Lira Aprilia Pujianti ORCID logo , Dewangga Oky Bagus Apriandanu , Rien Ritawidya und Yoki Yulizar EMAIL logo
Veröffentlicht/Copyright: 9. Juli 2025

Abstract

This study aimed to develop a novel material for dual-modality SPECT/MRI. MnFe2O4 nanoparticles (NPs) were synthesized via a green method using Elaeis guineensis Jacq. extracts (leaf extract – ELE and empty fruit bunches extract – EFBE) at an optimal calcination temperature of 400 °C. Characterization by FTIR, XRD, SEM, TEM, SAED, TGA, and VSM revealed NPs with an average size of 28.6 ± 9.6 nm and a magnetization value of 38.2 emu/g. The optimal conjugation with human serum albumin (HSA) was achieved at a 1:1 ratio, yielding approximately 0.388 ± 0.049 mg per mg of HSA. Radiolabeling of [99mTc]Tc-HSA-MnFe2O4 NPs was characterized using HPLC and TLC to assess impurities, demonstrating radiochemical purity exceeding 99 % across various media, including PBS, saline, water and human serum. Further studies are necessary to evaluate the biological profiles using in vitro and in vivo assays.


Corresponding author: Yoki Yulizar, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Universitas Indonesia, Depok, Jawa Barat 16424, Indonesia, E-mail:

Acknowledgments

All authors discussed the results and implications and commented on the manuscript at all stages. The authors also acknowledge the facilities, scientific, and technical support provided by the Advanced Characterization Physics Laboratories, and the Radioisotope and Radiopharmaceutical Installation, National Research and Innovation Agency, through E-Layanan Sains, BRIN.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors contributed equally to this work. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: Trinka AI (https://www.trinka.ai/) was used to assist in grammar checking and enhancing the language quality of this manuscript.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: This study was supported by the National Research and Innovation Agency (BRIN) through the Postgraduate Research-Based Program under Decree No. 111/II/HK/2023, organized by the Deputy for Human Resources of Science and Technology, and the Program for the Prototype of Nanotechnology and Advanced Materials, Project No. 3/III.10/HK/2023 (Code No: 31), organized by the Nanotechnology and Materials Research Organization.

  7. Data availability: Not applicable.

References

1. Chaturvedi, V. K.; Singh, A.; Singh, V. K.; Singh, M. P. Cancer Nanotechnology: A New Revolution for Cancer Diagnosis and Therapy. Curr. Drug Metab. 2018, 20, 416; https://doi.org/10.2174/1389200219666180918111528.Suche in Google Scholar PubMed

2. Munir, M.; Setiawan, H.; Awaludin, R.; Kett, V. L. Aerosolised Micro and Nanoparticle: Formulation and Delivery Method for Lung Imaging. Clin. Transl. Imaging 2022, 11, 33–50; https://doi.org/10.1007/s40336-022-00527-3.Suche in Google Scholar PubMed PubMed Central

3. Peters, J. A. Relaxivity of Manganese Ferrite Nanoparticles. Prog. Nucl. Magn. Reson. Spectrosc. 2020, 120-121, 72–94; https://doi.org/10.1016/j.pnmrs.2020.07.002.Suche in Google Scholar PubMed

4. Kalaiselvan, C. R.; Laha, S. S.; Somvanshi, S. B.; Tabish, T. A.; Thorat, N. D.; Sahu, N. K. Manganese Ferrite (MnFe2O4) Nanostructures for Cancer Theranostics. Coord. Chem. Rev. 2022, 473, 214809; https://doi.org/10.1016/j.ccr.2022.214809.Suche in Google Scholar

5. Gunawan, A. H.; Sugiharto, Y.; Yulianto, S.; Fikri, A. Synthesis and Characterization of Targeted Superparamagnetic MRI Contrast Agent MnFe2O4-Chitosan-Folate. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1053, 012019; https://doi.org/10.1088/1757-899x/1053/1/012019.Suche in Google Scholar

6. Akhlaghi, N.; Najafpour-Darzi, G.; Barras, A.; Mohammadi, M.; Boukherroub, R.; Szunerits, S. Magnetic MnFe2O4 Core–Shell Nanoparticles Coated with Antibiotics for the Ablation of Pathogens. Chem. Pap. 2021, 75, 377; https://doi.org/10.1007/s11696-020-01306-y.Suche in Google Scholar

7. Tombuloglu, H.; Tombuloglu, G.; Slimani, Y.; Ercan, I.; Sozeri, H.; Baykal, A. Impact of Manganese Ferrite (MnFe2O4) Nanoparticles on Growth and Magnetic Character of Barley (Hordeum Vulgare L.). Environ. Pollut. 2018, 243, 872; https://doi.org/10.1016/j.envpol.2018.08.096.Suche in Google Scholar PubMed

8. Singh, G.; Chandra, S. Electrochemical Performance of MnFe2O4 Nano-Ferrites Synthesized Using Thermal Decomposition Method. Int. J. Hydrogen Energy 2018, 43, 4058; https://doi.org/10.1016/j.ijhydene.2017.08.181.Suche in Google Scholar

9. Zhang, Y.; Wang, J.; Su, Z.; Lu, M.; Liu, S.; Gu, F.; Liu, J.; Tu, Y.; Jiang, T. Spinel MnFe2O4 Nanoparticles (MFO-NPs) for CO2 Cyclic Decomposition Prepared from Ferromanganese Ores. Ceram. Int. 2020, 46, 14206; https://doi.org/10.1016/j.ceramint.2020.02.229.Suche in Google Scholar

10. Akhlaghi, N.; Najafpour-Darzi, G. Manganese Ferrite (MnFe2O4) Nanoparticles: From Synthesis to Application -A Review. J. Ind. Eng. Chem. 2021, 103, 292; https://doi.org/10.1016/j.jiec.2021.07.043.Suche in Google Scholar

11. Naik, R.; Shivashankar, S.A.; Bindu, P.J. In-vitro Antioxidant and Anticancer Activities of MnFe2O4 Nanoparticles Synthesized Using Spinach Leaves Extract. Appl. NanoMed. 2022, 22, 330.Suche in Google Scholar

12. Indriyani, A.; Yulizar, Y.; Tri Yunarti, R.; Oky Bagus Apriandanu, D.; Marcony Surya, R. One-pot Green Fabrication of BiFeO3 Nanoparticles via Abelmoschus Esculentus L. Leaves Extracts for Photocatalytic Dye Degradation. Appl. Surf. Sci. 2021, 563, 150113; https://doi.org/10.1016/j.apsusc.2021.150113.Suche in Google Scholar

13. Jadoun, S.; Arif, R.; Jangid, N. K.; Meena, R. K. Green Synthesis of Nanoparticles Using Plant Extracts: A Review. Environ. Chem. Lett. 2021, 19, 355–74. https://doi.org/10.1007/s10311-020-01074-x.Suche in Google Scholar

14. Chen, T. L.; Kim, H.; Pan, S. Y.; Tseng, P. C.; Lin, Y. P.; Chiang, P. C. Implementation of Green Chemistry Principles in Circular Economy System towards Sustainable Development Goals: Challenges and Perspectives. Sci. Total Environ. 2020, 716; https://doi.org/10.1016/j.scitotenv.2020.136998.Suche in Google Scholar PubMed

15. Emmanuela Maria, W.; Kusumawati, E.; Regiana, A.; Suminar, D. R. Production Nanocellulose from Raw Materials for Oil Palm Empty Bunches (TKKS) with Hydrolysis and Freeze Drying Methods. IOP Conf. Ser: Mater. Sci. Eng. 2020, 742, 012033. https://doi.org/10.1088/1757-899X/742/1/012033.Suche in Google Scholar

16. Ahmad, T.; Irfan, M.; Bustam, M.A.; Bhattacharjee, S. Effect of Reaction Time on Green Synthesis of Gold Nanoparticles by Using Aqueous Extract of Elaise guineensis (Oil Palm Leaves). Procedia Eng. 2016, 148, 467–472.10.1016/j.proeng.2016.06.465Suche in Google Scholar

17. Rezka, A.; Yulizar, Y.; Ritawidya, R.; Oky, D.; Apriandanu, B.; Juliyanto, S.; Fikri, A.; Marcony, R. Nimotuzumab Iodine-131 Conjugated with MnFe2O4 for Potential Dual-Modality (MRI/SPECT) Imaging Nanoprobe. Mater. Sci. Eng. B 2022, 286, 116016; https://doi.org/10.1016/j.mseb.2022.116016.Suche in Google Scholar

18. Xi, W.; Zhang, G.; Xue, J.; Li, J.; Liu, Y.; Wang, J.; Yang, W. A Novel Superparamagnetic Iron Oxide Nanoparticles-Based SPECT/MRI Dual-Modality Probe for Tumor Imaging. J. Radioanal. Nucl. Chem. 2023; https://doi.org/10.1007/s10967-022-08741-z.Suche in Google Scholar

19. Lee, T. C.; Alessio, A. M.; Miyaoka, R. M.; Kinahan, P. E. Morphology Supporting Function: Attenuation Correction for SPECT/CT, PET/CT, and PET/MR Imaging. Quart. J. Nucl. Med. Molecular Imag. 2016, 60, 25, 26576737.Suche in Google Scholar

20. Awenat, S.; Piccardo, A.; Carvoeiras, P.; Signore, G.; Giovanella, L.; Prior, J. O.; Treglia, G. Diagnostic Role of 18F-PSMA-1007 PET/CT in Prostate Cancer Staging: A Systematic Review. Diagnostics 2021, 11, 552; https://doi.org/10.3390/diagnostics11030552.Suche in Google Scholar PubMed PubMed Central

21. Lamb, J.; Holland, J. P. Advanced Methods for Radiolabeling Multimodality Nanomedicines for SPECT/MRI and PET/MRI. J. Nucl. Med. 2018, 59, 382; https://doi.org/10.2967/jnumed.116.187419.Suche in Google Scholar PubMed

22. Cao, J.; Wang, Y.; Yu, J.; Xia, J.; Zhang, C.; Yin, D.; Häfeli, U. O. Preparation and Radiolabeling of Surface-Modified Magnetic Nanoparticles with Rhenium-188 for Magnetic Targeted Radiotherapy. J. Magn. Magn. Mater. 2004, 277, 165; https://doi.org/10.1016/j.jmmm.2003.10.022.Suche in Google Scholar

23. Chakravarty, R.; Goel, S.; Dash, A.; Cai, W. Radiolabeled Inorganic Nanoparticles for Positron Emission Tomography Imaging of Cancer: An Overview. Q. J. Nucl. Med. Mol. Imaging 2017, 61. https://doi.org/10.23736/s1824-4785.17.02969-7.Suche in Google Scholar PubMed PubMed Central

24. Munir, M.; Sriyono; Abidin; Sarmini, E.; Saptiama, I.; Kadarisman, M.; Marlina. Development of Mesoporous γ-alumina from Aluminium Foil Waste for 99Mo/99mTc Generator. J. Radioanal. Nucl. Chem. 2020, 326, 87; https://doi.org/10.1007/s10967-020-07288-1.Suche in Google Scholar

25. Tartaglione, G.; Visconti, G.; Bartoletti, R.; Gentileschi, S.; Salgarello, M.; Rubello, D.; Colletti, P. M. Stress Lymphoscintigraphy for Early Detection and Management of Secondary Limb Lymphedema. Clin. Nucl. Med. 2018, 43, 155; https://doi.org/10.1097/rlu.0000000000001963.Suche in Google Scholar

26. Caspani, S.; Magalhães, R.; Araújo, J.P.; Sousa, C.T. Magnetic Nanomaterials as Contrast Agents for MRI. Materials 2020, 13, 2586; https://doi.org/10.3390/ma13112586.Suche in Google Scholar PubMed PubMed Central

27. Putra, A. R.; Nugraha, D. A.; Lestari, W.; Ritawidya, R.; Darojatin, I.; Susilo, V. Y.; Fikri, A.; Juliyanto, S.; Febrian, M. B.; Ekaningsih, N. J. W.; Pujianti, L. A. Green Synthesis and Characterization of [99mTc]Tc-HSA-Fe3O4 Nanoparticle Conjugates Using Oil Palm (Elaeis guineensis Jacq.) Leaves and Empty Fruit Bunches Extract. AIP Conf. Proc. 2024, 2967, 210006; https://doi.org/10.1063/5.0192842.Suche in Google Scholar

28. Scholz, B.; Liebezeit, G. Chemical Screening for Bioactive Substances in Culture Media of Microalgae and Cyanobacteria from Marine and Brackish Water Habitats: First Results. Pharm. Biol. 2006, 44, 544; https://doi.org/10.1080/13880200600883114.Suche in Google Scholar

29. Ahmad, W.; Kalra, D. Green Synthesis, Characterization and Anti Microbial Activities of ZnO Nanoparticles Using Euphorbia hirta Leaf Extract. J. King Saud Univ. Sci. 2020, 32, 2358; https://doi.org/10.1016/j.jksus.2020.03.014.Suche in Google Scholar

30. Wutsqa, Y. U.; Sari, S. L. A. Detection of Terpenoids and Steroids in Lindsaea Obtusa with Thin Layer Chromatography. Asian J. Natural Product Biochem. 2021, 19; https://doi.org/10.13057/biofar/f190204.SuratmanSuche in Google Scholar

31. Duraisamy, R.; Shuge, T.; Worku, B.; Kerebo Berekete, A.; Karthikeyan, M. R. Extraction, Screening and Spectral Characterization of Tannins from Acacia Xanthophloea (Fever Tree) Bark. Res. J. Textile Leather 2020, 1; https://doi.org/10.46590/rjtl.2020.010101.Suche in Google Scholar

32. He, H. W.; Liu, H. J.; Zhou, K. C.; Wang, W.; Rong, P. F. Characteristics of Magnetic Fe3O4 Nanoparticles Encapsulated with Human Serum Albumin. J. Central South Univ. Technol. (English Edition) 2006, 13, 6; https://doi.org/10.1007/s11771-006-0097-2.Suche in Google Scholar

33. Sen, S.; Konar, S.; Pathak, A.; Dasgupta, S.; Dasgupta, S. Effect of Functionalized Magnetic MnFe2O4 Nanoparticles on Fibrillation of Human Serum Albumin. J. Phys. Chem. B 2014, 118, 11667; https://doi.org/10.1021/jp507902y.Suche in Google Scholar PubMed

34. Azmi, A.A.; Jai, J.; Alias, A.B.; Idris, S.A.; Yusof, N.M. Response Surface Methodology (RSM) for Optimization of Silver Biorecovery Process from Simulated Silver Electroplating Wastewater Using Oil Palm (Elaeis guineensis) Leaves Extract as the Reducing and Stabilizing Agents. J. Phys.: Conf. Ser. 2019, 1349, 012075; https://doi.org/10.1088/1742-6596/1349/1/012075.Suche in Google Scholar

35. Suwarno, A. C.; Yulizar, Y.; Apriandanu, D. O. B.; Surya, R. M. Biosynthesis of Dy2O3 Nanoparticles Using Piper Retrofractum Vahl Extract: Optical, Structural, Morphological, and Photocatalytic Properties. J. Mol. Struct. 2022, 1264. https://doi.org/10.1016/j.molstruc.2022.133123.Suche in Google Scholar

36. Li, N.; Fu, F.; Lu, J.; Ding, Z.; Tang, B.; Pang, J. Facile Preparation of Magnetic Mesoporous MnFe2O4@SiO2-CTAB Composites for Cr(VI) Adsorption and Reduction. Environ. Pollut. 2017, 220 Pt B, 1376; https://doi.org/10.1016/j.envpol.2016.10.097.Suche in Google Scholar PubMed

37. Ibrahim, I.; Ali, I. O.; Salama, T. M.; Bahgat, A. A.; Mohamed, M. M. Synthesis of Magnetically Recyclable Spinel Ferrite (MFe2O4, M=Zn, Co, Mn) Nanocrystals Engineered by Sol Gel-Hydrothermal Technology: High Catalytic Performances for Nitroarenes Reduction. Appl. Catal. B. 2016, 181, 389; https://doi.org/10.1016/j.apcatb.2015.08.005.Suche in Google Scholar

38. Kumar, A.; Gora, M. K.; Lal, G.; Choudhary, B. L.; Meena, P. L.; Dhaka, R. S.; Singhal, R. K.; Kumar, S.; Dolia, S. N. Impact of Gd3+ Doping on Structural, Electronic, Magnetic, and Photocatalytic Properties of MnFe2O4 Nanoferrites and Application in Dye-Polluted Wastewater Remediation. Environ. Sci. Pollut. Res. 2023, 30, 18820; https://doi.org/10.1007/s11356-022-23420-y.Suche in Google Scholar PubMed

39. Qiao, L.; Shi, Y.; Cheng, Q.; Liu, B.; Liu, J. The Removal Efficiencies and Mechanism of Aniline Degradation by Peroxydisulfate Activated with Magnetic Fe-Mn Oxides Composite. Water Reuse 2021, 11, 212; https://doi.org/10.2166/wrd.2021.102.Suche in Google Scholar

40. Grey, L. H.; Nie, H.-Y.; Biesinger, M. C. Defining the Nature of Adventitious Carbon and Improving its Merit as a Charge Correction Reference for XPS. Appl. Surf. Sci. 2024, 653, 159319; https://doi.org/10.1016/j.apsusc.2024.159319.Suche in Google Scholar

41. Shard, A.G. Detection Limits in XPS for More Than 6000 Binary Systems Using Al and Mg Kα X-Rays. Surf. Interface Anal. 2014, 46, 175; https://doi.org/10.1002/sia.5406.Suche in Google Scholar

42. Kunc, F.; Gallerneault, M.; Kodra, O.; Brinkmann, A.; Lopinski, G. P.; Johnston, L. J. Surface Chemistry of Metal Oxide Nanoparticles: NMR and TGA Quantification. Anal. Bioanal. Chem. 2022, 414, 4409; https://doi.org/10.1007/s00216-022-03906-x.Suche in Google Scholar PubMed PubMed Central

43. Gürbüz, M. U.; Koca, M.; Elmacı, G.; Ertürk, A. S. In Situ Green Synthesis of MnFe2O4@EP@Ag Nanocomposites Using Epilobium parviflorum Green Tea Extract: An Efficient Magnetically Recyclable Catalyst for the Reduction of Hazardous Organic Dyes. Appl. Organomet. Chem. 2021, 35.10.1002/aoc.6230Suche in Google Scholar

44. Nunes, M. S.; Morales, M.A.; Paesano, A.; de Araújo, J. H. Synthesis and Characterization of Monophasic MnFe2O4 Nanoparticles for Potential Application in Magnetic Hyperthermia. Ceram. Int. 2024, 50, 25333; https://doi.org/10.1016/j.ceramint.2024.04.264.Suche in Google Scholar

45. Şaşmaz Kuru, T. Effect of Calcination Temperature on Structural, Magnetic, and Dielectric Properties of Mg0.75Zn0.25Al0.2Fe1.8O4 Ferrites. J. Mater. Sci.: Mater. Electron. 2024, 35. https://doi.org/10.1007/s10854-024-12185-4.Suche in Google Scholar

46. Ahmadi, A.; Foroutan, R.; Esmaeili, H.; Tamjidi, S. The Role of Bentonite Clay and Bentonite clay@MnFe2O4 Composite and Their Physico-Chemical Properties on the Removal of Cr(III) and Cr(VI) from Aqueous Media. Environ. Sci. Pollut. Res. 2020, 27, 14044; https://doi.org/10.1007/s11356-020-07756-x.Suche in Google Scholar PubMed

47. Islam, K.; Haque, M.; Kumar, A.; Hoq, A.; Hyder, F.; Hoque, S.M. Manganese Ferrite Nanoparticles (MnFe2O4): Size Dependence for Hyperthermia and Negative/positive Contrast Enhancement in MRI. Nanomaterials 2020, 10, 1; https://doi.org/10.3390/nano10112297.Suche in Google Scholar PubMed PubMed Central

48. Kafshgari, L. A.; Ghorbani, M.; Azizi, A. Synthesis and Characterization of Manganese Ferrite Nanostructure by Co-precipitation, Sol-Gel, and Hydrothermal Methods. Part. Sci. Technol. 2019, 37, 900; https://doi.org/10.1080/02726351.2018.1461154.Suche in Google Scholar

49. Rivas, P.; Sagredo, V.; Rossi, F.; Pernechele, C.; Solzi, M.; Peña, O. Structural, Magnetic, and Optical Characterization of MnFe2O4 Nanoparticles Synthesized via Sol-Gel Method. IEEE Trans. Magn. 2013, 49, 4568; https://doi.org/10.1109/tmag.2013.2262039.Suche in Google Scholar

50. Wei, Z.; Huang, S.; Zhang, X.; Lu, C.; He, Y. Hydrothermal Synthesis and Photo-Fenton Degradation of Magnetic MnFe2O4/rGO Nanocomposites. J. Mater. Sci.: Mater. Electron. 2020, 31, 5176; https://doi.org/10.1007/s10854-020-03077-4.Suche in Google Scholar

51. Zipare, K.; Dhumal, J.; Bandgar, S.; Mathe, V.; Shahane, G. Superparamagnetic Manganese Ferrite Nanoparticles: Synthesis and Magnetic Properties. J. Nanosci. Nanoeng. 2015, 1, 178.Suche in Google Scholar

52. Mazario, E.; Forget, A.; Belkahla, H.; Lomas, J.S.; Decorse, P.; Chevillot-Biraud, A.; Verbeke, P.; Wilhelm, C.; Ammar, S.; El Hage Chahine, J.M.; Hemadi, M. Functionalization of Iron Oxide Nanoparticles with HSA Protein for Thermal Therapy. IEEE Trans. Magn. 2017, 53; https://doi.org/10.1109/tmag.2017.2707599.Suche in Google Scholar

53. Usoltsev, D.; Sitnikova, V.; Kajava, A.; Uspenskaya, M. Systematic FTIR Spectroscopy Study of the Secondary Structure Changes in Human Serum Albumin under Various Denaturation Conditions. Biomolecules 2019, 9, 1; https://doi.org/10.3390/biom9080359.Suche in Google Scholar PubMed PubMed Central

54. Lan Huong, P. T.; Tu, N.; Lan, H.; Thang, L. H.; van Quy, N.; Tuan, P. A.; Dinh, N. X.; Phan, V. N.; Le, A. T. Functional Manganese Ferrite/graphene Oxide Nanocomposites: Effects of Graphene Oxide on the Adsorption Mechanisms of Organic MB Dye and Inorganic As(v) Ions from Aqueous Solution. RSC Adv. 2018, 8, 12376; https://doi.org/10.1039/c8ra00270c.Suche in Google Scholar PubMed PubMed Central

55. Tan, G.; Kantner, K.; Zhang, Q.; Soliman, M. G.; del Pino, P.; Parak, W. J.; Onur, M. A.; Valdeperez, D.; Rejman, J.; Pelaz, B. Conjugation of Polymer-Coated Gold Nanoparticles with Antibodies—Synthesis and Characterization. Nanomaterials 2015, 5, 1297; https://doi.org/10.3390/nano5031297.Suche in Google Scholar PubMed PubMed Central

56. Esfandyari-Manesh, M.; Mostafavi, S. H.; Majidi, R. F.; Koopaei, M. N.; Ravari, N. S.; Amini, M.; Darvishi, B.; Ostad, S. N.; Atyabi, F.; Dinarvand, R. Improved Anticancer Delivery of Paclitaxel by Albumin Surface Modification of PLGA Nanoparticles. DARU, J. Pharmaceutical Sci. 2015, 23; https://doi.org/10.1186/s40199-015-0107-8.Suche in Google Scholar PubMed PubMed Central

57. Nakayama, T.; Kobayashi, K.; Kameda, T.; Hase, M.; Hirano, A. Protein’s Protein Corona: Nanoscale Size Evolution of Human Immunoglobulin G Aggregates Induced by Serum Albumin. ACS Appl. Mater. Interfaces 2022, 14, 32937; https://doi.org/10.1021/acsami.2c08271.Suche in Google Scholar PubMed

58. Yu, S. S.; Lau, C. M.; Thomas, S. N.; Gray Jerome, W.; Maron, D. J.; Dickerson, J. H.; Hubbell, J. A.; Giorgio, T. D. Size- and Charge-dependent Non-specific Uptake of PEGylated Nanoparticles by Macrophages. Int J Nanomedicine 2012, 7, 799; https://doi.org/10.2147/ijn.s28531.Suche in Google Scholar PubMed PubMed Central

59. Blanc-Béguin, F.; Hennebicq, S.; Robin, P.; Tripier, R.; Salaün, P. Y.; Le Roux, P. Y. Radiopharmaceutical Labelling for Lung Ventilation/Perfusion PET/CT Imaging: A Review of Production and Optimization Processes for Clinical Use. Pharmaceuticals 2022, 15, 518; https://doi.org/10.3390/ph15050518.Suche in Google Scholar PubMed PubMed Central

60. Cusnir, R.; Leresche, M.; Pilloud, C.; Straub, M. An Investigation of Aspects of Radiochemical Purity of 99mTc-Labelled Human Serum Albumin Nanocolloid. EJNMMI Radiopharm. Chem. 2021, 6, 35; https://doi.org/10.1186/s41181-021-00147-8.Suche in Google Scholar PubMed PubMed Central

61. Liang, J.; Luo, Q.; Zhang, D.; Jin, Q.; Liu, L.; Liu, W.; Gao, M.; Zhang, J.; Yin, Z. SPECT Imaging of Treatment-Related Tumor Necrosis Using Technetium-99m-Labeled Rhein. Mol. Imaging Biol. 2019, 21, 660; https://doi.org/10.1007/s11307-018-1285-9.Suche in Google Scholar PubMed

62. Vanbilloen, H. P.; Verbeke, K. A.; De Roo, M. J.; Verbruggen, A. M. Technetium-99m Labelled Human Serum Albumin for Ventriculography: A Comparative Evaluation of Six Labelling Kits. Eur. J. Nucl. Med. 1993, 20, 465–472.10.1007/BF00175158Suche in Google Scholar PubMed

63. Elzoghby, A. O.; Samy, W. M.; Elgindy, N. A. Albumin-based Nanoparticles as Potential Controlled Release Drug Delivery Systems. J. Control. Release. 2012, 157, 168–182; https://doi.org/10.1016/j.jconrel.2011.07.031.Suche in Google Scholar PubMed

64. Ashraf, S.; Qaiser, H.; Tariq, S.; Khalid, A.; Makeen, H. A.; Alhazmi, H. A.; Ul-Haq, Z. Unraveling the Versatility of Human Serum Albumin – A Comprehensive Review of its Biological Significance and Therapeutic Potential. Curr. Res. Struct. Biol. 2023, 6, 100114; https://doi.org/10.1016/j.crstbi.2023.100114.Suche in Google Scholar PubMed PubMed Central

65. Kennel, S. J.; Jackson, J. W.; Stuckey, A.; Richey, T.; Foster, J. S.; Wall, J. S. Preclinical Evaluation of Tc-99m P5+14 Peptide for SPECT Detection of Cardiac Amyloidosis. PLoS One 2024, 19; https://doi.org/10.1371/journal.pone.0301756.Suche in Google Scholar PubMed PubMed Central

66. Pereira, N. C.; de Oliveira Silva, J.; De Sousa, F. B.; Miranda, S. E. M.; Soares, D. C. F.; de Barros, A. L. B. [99mTc]Tc-Phosphate-buffer System as a Potential Tracer for Bone Imaging. J. Radioanal. Nucl. Chem. 2021, 329, 1119; https://doi.org/10.1007/s10967-021-07869-8.Suche in Google Scholar

67. Sanad, M. H.; Marzook, F. A.; Farag, A. B.; Mandal, S. K.; Rizvi, S. F. A.; Gupta, J. K. Preparation, Biological Evaluation and Radiolabeling of [99mTc]-Technetium Tricarbonyl Procainamide as a Tracer for Heart Imaging in Mice. Radiochim. Acta 2022, 110, 267; https://doi.org/10.1515/ract-2021-1079.Suche in Google Scholar

68. Wan, J.; Kim, Y.; Mulvihill, M.J.; Tokunaga, T.K. Dilution Destabilizes Engineered Ligand-Coated Nanoparticles in Aqueous Suspensions. Environ. Toxicol. Chem. 2018, 37, 1301; https://doi.org/10.1002/etc.4103.Suche in Google Scholar PubMed

69. Pijeira, M.S.O.; Viltres, H.; Kozempel, J.; Sakmár, M.; Vlk, M.; İlem-Özdemir, D.; Ekinci, M.; Srinivasan, S.; Rajabzadeh, A.R.; Ricci-Junior, E.; Alencar, L.M.R.; Al Qahtani, M.; Santos-Oliveira, R. Radiolabeled Nanomaterials for Biomedical Applications: Radiopharmacy in the Era of Nanotechnology. EJNMMI Radiopharm. Chem. 2022, 7. https://doi.org/10.1186/s41181-022-00161-4.Suche in Google Scholar PubMed PubMed Central

70. Mady Sy, P.; Rodrigue Djiboune, A.; Mouhamed Dieng, S.; Ndong, B.; Hadji Amadou Lamine Bathily, E.; Diop, O.; Soumboundou, M.; Augustin Diaga Diouf, L.; Mbaye, G.; Mbodj, M.; Diarra, M.; Seck Gassama, S. Radiolabeling with Technetium 99m for the Diagnosis of Coronary Heart Disease in Senegal. Eur. J. Biophys. 2023, 11, 17–24; https://doi.org/10.11648/j.ejb.20231101.12.Suche in Google Scholar

71. Vavere, A. L.; Butch, E. R.; Dearling, J. L. J.; Packard, A. B.; Navid, F.; Shulkin, B. L.; Barfield, R. C.; Snyder, S. E. 64Cu-p-NH2-Bn-DOTA-hu14.18K322A, A PET Radiotracer Targeting Neuroblastoma and Melanoma. J. Nuclear Med. 2012, 53, 1772; https://doi.org/10.2967/jnumed.112.104208.Suche in Google Scholar PubMed

Received: 2024-11-12
Accepted: 2025-05-30
Published Online: 2025-07-09
Published in Print: 2025-09-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0368/html
Button zum nach oben scrollen