Separation and purification of Zr from a low-temperature LiCl–KCl–CsCl eutectic by the formation of dendritic crystal
Abstract
Zirconium is widely used in the nuclear industry as a cladding material for nuclear reactors and loading nuclear fuel. From the perspective of safety and the economy, the recovery of zirconium from cladding waste at low temperatures is of strategic significance for nuclear energy. This work studied the electrochemical behavior of Zr(IV) and the separation of Zr metal in a low-temperature LiCl–KCl–CsCl molten salt system at 573 K (300 °C). Zr(IV) ion was reduced to metallic Zr through a two-step four-electron reaction process Zr(IV) → Zr(III) → Zr on the W electrode. The diffusion coefficients of Zr(IV) on the W electrode calculated by cyclic voltammetry and chronoamperometry were 5.805 × 10−5 cm2 s−1 and 2.861 × 10−5 cm2 s−1, respectively. Furthermore, the reaction activation energy of the Zr(III)/Zr(0) pair was measured to be 34.52 kJ mol−1 by the Tafel method. Then, the electrochemical recovery of Zr was accomplished on the W electrode by potentiostatic electrolysis at −2.0 V or galvanostatic electrolysis at 0.01 A, and two zirconium-containing products with the dendritic and flakes morphologies were obtained accordingly. This study provides a new low-temperature molten salt system for the reprocessing of zirconium cladding and shows the application potential of low-temperature molten salts LiCl–KCl–CsCl for spent fuel reprocessing.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: This work is funded by the National Natural Science Foundation of China (U2267222).
-
Data availability: Not applicable.
References
1. Zhang, Y.; Cai, Y.; Zhang, S.; Gao, F.; Lv, Z.; Fang, M.; Zhao, P.; Tan, X.; Hu, B.; Kong, M.; Wang, X. Super-Efficient Extraction of U(VI) by the Dual-Functional Sodium Vanadate (Na2V6O16·2H2O) Nanobelts. Chem. Eng. J. 2022, 446, 137230; https://doi.org/10.1016/j.cej.2022.137230.Suche in Google Scholar
2. Rudisill, T. S. Decontamination of Zircaloy Cladding Hulls from Spent Nuclear Fuel. J. Nucl. Mater. 2009, 385, 193–195; https://doi.org/10.1016/j.jnucmat.2008.10.016.Suche in Google Scholar
3. Collins, E. D.; DelCul, G. D.; Spencer, B. B.; Brunson, R. R.; Johnson, J. A.; Terekhov, D. S.; Emmanuel, N. V. Process Development Studies for Zirconium Recovery/Recycle from Used Nuclear Fuel Cladding. Procedia Chem 2012, 7, 72–76; https://doi.org/10.1016/j.proche.2012.10.013.Suche in Google Scholar
4. Jung, H. S.; Choi, S.; Hwang, I. S.; Song, M. J. Environmental Assessment of Advanced Partitioning, Transmutation, and Disposal Based on Long-Term Risk-Informed Regulation: Pyrogreen. Prog. Nucl. Energy 2012, 58, 27–38; https://doi.org/10.1016/j.pnucene.2012.02.003.Suche in Google Scholar
5. Wang, D.; Liu, Y.; Yang, D.; Zhong, Y.; Han, W.; Wang, L.; Chai, Z.; Shi, W. Separation of Uranium from Lanthanides (La, Sm) with Sacrificial Li Anode in LiCl-KCl Eutectic Salt. Sep. Purif. Technol. 2022, 292, 121025; https://doi.org/10.1016/j.seppur.2022.121025.Suche in Google Scholar
6. Wang, D.; Liu, Y.; Zhong, Y.; Jiang, S.; Liu, Y.; Chen, J.; Han, W.; Wang, L.; Shi, W. Electrochemical Behavior and Reduction of UO22+ in LiCl-KCl Molten Salt. J. Electrochem. Soc. 2023, 170, 112507; https://doi.org/10.1149/1945-7111/ad0bb0.Suche in Google Scholar
7. Chen, J.; Zhong, Y.; Wang, D.; Li, M.; Han, W.; Liu, Y.; Shi, W. Passivation Phenomenon and Variable Properties of Ytterbium in Different Lewis Acid AlCl3-NaCl Melts. J. Electroanal. Chem. 2023, 950, 117884; https://doi.org/10.1016/j.jelechem.2023.117884.Suche in Google Scholar
8. Yang, M.; Zhong, Y.; Wang, D.; Wang, L.; Jiang, S.; Zhang, T.; Yan, Y.; Liu, Y.; Shi, W. Rapid and Efficient Extraction of Cerium by Forming Al-Ce Alloys in LiCl-KCl Molten Salts. Sep. Purif. Technol. 2024, 341, 126868; https://doi.org/10.1016/j.seppur.2024.126868.Suche in Google Scholar
9. Lee, C. H.; Kang, K. H.; Jeon, M. K.; Heo, C. M.; Lee, Y. L. Electrorefining of Zirconium from Zircaloy-4 Cladding Hulls in LiCl-KCl Molten Salts. J. Electrochem. Soc. 2012, 159, D463–D468; https://doi.org/10.1149/2.012208jes.Suche in Google Scholar
10. Fabian, C. P.; Luca, V.; Le, T. H.; Bond, A. M.; Chamelot, P.; Massot, L.; Caravaca, C.; Hanley, T. L.; Lumpkin, G. R. Cyclic Voltammetric Experiment-Simulation Comparisons of the Complex Mechanism Associated with Electrochemical Reduction of Zr4+ in LiCl-KCl Eutectic Molten Salt. J. Electrochem. Soc. 2013, 160, H81–H86; https://doi.org/10.1149/2.016302jes.Suche in Google Scholar
11. Cai, Y.; Liu, H.; Xu, Q.; Song, Q.; Liu, H.; Xu, L. Electrochemical Behavior of Zirconium in an In-Situ Preparing LiCl-KCl-ZrCl4 Molten Slat. Int. J. Electrochem. Sci. 2015, 10, 4324–4334; https://doi.org/10.1016/s1452-3981(23)06625-7.Suche in Google Scholar
12. Ghosh, S.; Vandarkuzhali, S.; Gogoi, N.; Venkatesh, P.; Seenivasan, G.; Reddy, B. P.; Nagarajan, K. Anodic Dissolution of U, Zr and U-Zr Alloy and Convolution Voltammetry of Zr4+/Zr2+ Couple in Molten LiCl-KCl Eutectic. Electrochim. Acta 2011, 24, 8204–8218.10.1016/j.electacta.2011.06.027Suche in Google Scholar
13. Hoover, R. O.; Yoon, D.; Phongikaroon, S. Effects of Temperature, Concentration, and Uranium Chloride Mixture on Zirconium Electrochemical Studies in LiCl-KCl Eutectic Salt. J. Nucl. Mater. 2016, 476, 179–187; https://doi.org/10.1016/j.jnucmat.2016.04.037.Suche in Google Scholar
14. Chen, Z.; Li, Y. J.; Li, S. J. Electrochemical Behavior of Zirconium in the LiCl-KCl Molten Salt at Mo Electrode. J. Alloys Compd. 2011, 509, 5958–5961; https://doi.org/10.1016/j.jallcom.2010.10.048.Suche in Google Scholar
15. Guang Sen, C.; Okido, M.; Oki, T. Electrochemical Studies of Zirconium and Hafnium in Alkali Chloride and Alkali fluoride-chloride Molten Salts. J. Appl. Electrochem. 1990, 20, 77–84; https://doi.org/10.1007/bf01012474.Suche in Google Scholar
16. Girginov, A.; Tzvetkoff, T. Z.; Bojinov, M. Electrodeposition of Refractory Metals (Ti, Zr, Nb, Ta) from Molten Salt Electrolytes. J. Appl. Electrochem. 1995, 25, 993–1003; https://doi.org/10.1007/bf00241947.Suche in Google Scholar
17. Sakamura, Y. Zirconium Behavior in Molten LiCl-KCl Eutectic. J. Electrochem. Soc. 2004, 151, C187; https://doi.org/10.1149/1.1644605.Suche in Google Scholar
18. Basin, A. S.; Kaplun, A. B.; Meshalkin, A. B.; Uvarov, N. F. The LiCl-KCl Binary System. Russ. J. Inorg. Chem. 2008, 53, 1509–1511; https://doi.org/10.1134/s003602360809026x.Suche in Google Scholar
19. Burton, B. P.; Van, D.; Walle, A. First-Principles Phase Diagram Calculations for the System NaCl-KCl: The Role of Excess Vibrational Entropy. Chem. Geol. 2006, 225, 222–229.10.1016/j.chemgeo.2005.08.016Suche in Google Scholar
20. Chen, J.; Zhong, Y.; Wang, D.; Li, M.; Han, W.; Liu, Y.; Shi, W. Selective Electro-Oxidative Separation of Sm, Yb, and Eu in Low-Temperature Molten Salt AlCl3-NaCl. Sep. Purif. Technol. 2024, 346, 127500; https://doi.org/10.1016/j.seppur.2024.127500.Suche in Google Scholar
21. Liu, Y.; Liu, Y.; Wang, L.; Jiang, S.; Wang, D.; Liu, Z.; Li, M.; Shi, W. Electrochemical Behaviors and Extraction of Ln(III) (Ln = La, Ce, Nd) Ions in LiCl-KCl-CsCl Eutectic Salts at Low Temperatures. ACS Sustain. Chem. Eng. 2023, 11, 8161–8172; https://doi.org/10.1021/acssuschemeng.3c01474.Suche in Google Scholar
22. Smolenski, V.; Novoselova, A.; Volkovich, V. A.; Ryzhov, A. A.; Yan, Y.; Xue, Y.; Ma, F. Speciation of Dysprosium in Molten LiCl-KCl-CsCl Eutectic: An Electrochemistry and Spectroscopy Study. J. Electroanal. Chem. 2022, 904, 115955; https://doi.org/10.1016/j.jelechem.2021.115955.Suche in Google Scholar
23. Park, K. T.; Lee, T. H.; Jo, N. C.; Nersisyan, H. H.; Chun, B. S.; Lee, H. H.; Lee, J. H. Purification of Nuclear Grade Zr Scrap as the High Purity Dense Zr Deposits from Zirlo Scrap by Electrorefining in LiF-KF-ZrF4 Molten Fluorides. J. Nucl. Mater. 2013, 436, 130–138; https://doi.org/10.1016/j.jnucmat.2013.01.310.Suche in Google Scholar
24. Ito, H.; Hasegawa, Y.; Ito, Y. Densities of Eutectic Mixtures of Molten Alkali Chlorides Below 673 K. J. Chem. Eng. Data 2001, 46, 1203–1205; https://doi.org/10.1021/je010092n.Suche in Google Scholar
25. De Levie, R.; De Levie, R. How to Use Excel in Analytical Chemistry and in General Scientific Data Analysis; Cambridge University Press: Cambridge, 2001; p. 487.10.1017/CBO9780511808265Suche in Google Scholar
26. Liu, K.; Liu, Y. L.; Chai, Z. F.; Shi, W. Q. Evaluation of the Electroextractions of Ce and Nd from LiCl-KCl Molten Salt Using Liquid Ga Electrode. J. Electrochem. Soc. 2017, 164, D169–D178; https://doi.org/10.1149/2.0511704jes.Suche in Google Scholar
27. Marsden, K. C.; Pesic, B. Evaluation of the Electrochemical Behavior of CeCl3 in Molten LiCl-KCl Eutectic Utilizing Metallic Ce as an Anode. J. Electrochem. Soc. 2011, 158, F111; https://doi.org/10.1149/1.3575637.Suche in Google Scholar
28. Liu, S.; Wang, L.; Chou, K.; Kumar, R. V. Electrolytic Preparation and Characterization of VCr Alloys in Molten Salt from Vanadium Slag. J. Alloys Compd. 2019, 803, 875–881; https://doi.org/10.1016/j.jallcom.2019.06.366.Suche in Google Scholar
29. Krause, M. S.; Ramaley, L. Analytical Application of Square Wave Voltammetry. Anal. Chem. 1969, 41, 1365–1369; https://doi.org/10.1021/ac60280a008.Suche in Google Scholar
30. O’Dea, J. J.; Osteryoung, J.; Osteryoung, R. A. Theory of Square Wave Voltammetry for Kinetic Systems. Anal. Chem. 1981, 53, 695–701; https://doi.org/10.1021/ac00227a028.Suche in Google Scholar
31. Cha, H. L.; Yun, J. I. Redox Behaviors of Zirconium in Molten LiCl-KCl Eutectic Salt Based on the Comproportionation Reaction Between Zr(0) and Zr(IV). Electrochem. Commun. 2017, 84, 86–89; https://doi.org/10.1016/j.elecom.2017.10.010.Suche in Google Scholar
32. Su, Y.; Kuijpers, K.; Hessel, V.; Noël, T. A Convenient Numbering-Up Strategy for the Scale-Up of Gas-Liquid Photoredox Catalysis in Flow. React. Chem. Eng. 2016, 1, 73–81; https://doi.org/10.1039/c5re00021a.Suche in Google Scholar
33. Lee, C. H.; Kang, K. H.; Jeon, M. K.; Heo, C. M.; Lee, Y. L. Electrorefining of Zirconium from Zircaloy-4 Cladding Hulls in LiCl-KCl Molten Salts. J. Electrochem. Soc. 2012, 159, D463–D468; https://doi.org/10.1149/2.012208jes.Suche in Google Scholar
34. Lee, C. H.; Kang, K. H.; Jeon, M. K.; Heo, C. M.; Lee, Y. L. Electrorefining of Zirconium from Zircaloy-4 Cladding Hulls in LiCl-KCl Molten Salts. ECS Trans. 2013, 50, 491–496; https://doi.org/10.1149/05011.0491ecst.Suche in Google Scholar
35. Liu, H.; Cai, Y.; Xu, Q.; Song, Q.; Liu, H. A Novel Preparation of Zr-Si Intermetallics by Electrochemical Reduction of ZrSiO4 in Molten Salts. New J. Chem. 2015, 39, 9969–9975; https://doi.org/10.1039/c5nj01896j.Suche in Google Scholar
36. Zhang, S.; Gao, F.; Fang, M.; Liu, B.; Zhang, B.; Zhong, Z.; Yu, L.; Zhang, Y.; Tan, X.; Wang, X. Catalyst‐Free Extraction of U(VI) in Solution by Tribocatalysis. Adv. Sci. 2024, 2404397; https://doi.org/10.1002/advs.202404397.Suche in Google Scholar PubMed PubMed Central
37. Tan, J.; He, X.; Yin, F.; Liang, X.; Li, G.; Li, Z. Zr-Doped α-FeOOH with High Faradaic Efficiency for Electrochemical Nitrogen Reduction Reaction. Appl. Surf. Sci. 2021, 567, 150801; https://doi.org/10.1016/j.apsusc.2021.150801.Suche in Google Scholar
38. Aldaz, A.; Feliu, J. M. Book Review. J. Electroanal. Chem. 2012, 670, 78; https://doi.org/10.1016/j.jelechem.2012.01.002.Suche in Google Scholar
39. Janata, J. Physical Electrochemistry. Fundamentals, Techniques and Applications. Von Eliezer Gileadi. Angew. Chem. 2011, 123, 9710; https://doi.org/10.1002/ange.201104618.Suche in Google Scholar
40. Han, W.; Li, W.; Chen, J.; Li, M.; Li, Z.; Dong, Y.; Zhang, M. Electrochemical Properties of Yttrium on W and Pb Electrodes in LiCl-KCl Eutectic Melts. RSC Adv. 2019, 9, 26718–26728; https://doi.org/10.1039/c9ra05496k.Suche in Google Scholar PubMed PubMed Central
41. Han, W.; Wang, W.; Li, H.; Zhao, Y.; Wang, Y.; Liu, R.; Li, M. Electrochemical Recovering Zr from Molten Salt Using an Fe Electrode. ACS Sustain. Chem. Eng. 2021, 9, 17393–17402; https://doi.org/10.1021/acssuschemeng.1c06931.Suche in Google Scholar
42. Gao, F.; Fang, M.; Zhang, S.; Ni, M.; Cai, Y.; Zhang, Y.; Tan, X.; Kong, M.; Xu, W.; Wang, X. Symmetry-Breaking Induced Piezocatalysis of Bi2S3 Nanorods and Boosted by Alternating Magnetic Field. Appl. Catal. B Environ. 2022, 316, 121664; https://doi.org/10.1016/j.apcatb.2022.121664.Suche in Google Scholar
43. Kim, G. Y.; Yoon, D.; Paek, S.; Kim, S. H.; Kim, T. J.; Ahn, D. H. A Study on the Electrochemical Deposition Behavior of Uranium Ion in a LiCl-KCl Molten Salt on Solid and Liquid Electrode. J. Electroanal. Chem. 2012, 682, 128–135; https://doi.org/10.1016/j.jelechem.2012.07.025.Suche in Google Scholar
44. Tang, H.; Pesic, B. Electrochemistry and the Mechanisms of Nucleation and Growth of Neodymium During Electroreduction from LiCl-KCl Eutectic Salts on Mo Substrate. J. Nucl. Mater. 2015, 458, 37–44; https://doi.org/10.1016/j.jnucmat.2014.11.084.Suche in Google Scholar
45. Ding, L.; Wang, X.; Yang, S.; Xu, W.; Yan, Y.; Xue, Y.; Ma, F. Electrochemical Extraction Mechanism of Nd on Ga-Al Alloy Electrode. Sep. Purif. Technol. 2023, 306, 122543; https://doi.org/10.1016/j.seppur.2022.122543.Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/ract-2024-0355).
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Separation and purification of Zr from a low-temperature LiCl–KCl–CsCl eutectic by the formation of dendritic crystal
- Particle-reinforced ion exchange resin for selective separation and recovery of cesium from highly acidic water
- Green synthesis of MnFe2O4 nanoparticles using Elaeis guineensis Jacq. leaves and empty fruit bunches extract and its radiolabeling with 99mTc as a potential agent for dual-modality imaging SPECT/MRI
- Mn(II) and Cu(II) metal complexes with bisamine based bidentate ligand. Spectroscopic investigation, biological activity and gamma ray irradiation impact
- Synergistic influence of carbon black and montmorillonite nano clay on mechanical, electrical, and acoustic properties of nitrile butadiene rubber nanocomposites via gamma radiation
- Erbium-borate modified glass with lead and barium: new composite materials for gamma ray shielding
- Gamma and neutron radiation shielding properties of Al2O3–B2O3–SiO2–ZnO–BaO glasses
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Separation and purification of Zr from a low-temperature LiCl–KCl–CsCl eutectic by the formation of dendritic crystal
- Particle-reinforced ion exchange resin for selective separation and recovery of cesium from highly acidic water
- Green synthesis of MnFe2O4 nanoparticles using Elaeis guineensis Jacq. leaves and empty fruit bunches extract and its radiolabeling with 99mTc as a potential agent for dual-modality imaging SPECT/MRI
- Mn(II) and Cu(II) metal complexes with bisamine based bidentate ligand. Spectroscopic investigation, biological activity and gamma ray irradiation impact
- Synergistic influence of carbon black and montmorillonite nano clay on mechanical, electrical, and acoustic properties of nitrile butadiene rubber nanocomposites via gamma radiation
- Erbium-borate modified glass with lead and barium: new composite materials for gamma ray shielding
- Gamma and neutron radiation shielding properties of Al2O3–B2O3–SiO2–ZnO–BaO glasses