Startseite Application of response surface method in the separation of radioactive material: a review
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Application of response surface method in the separation of radioactive material: a review

  • Tianxing Da , Tao Chen EMAIL logo , Yan Ma und Zhenfeng Tong
Veröffentlicht/Copyright: 22. November 2021

Abstract

Response Surface Method (RSM) is one of the most popular and powerful tools for experimental design and optimization. This paper first reviewed the research progress of RSM in the separation and recovery of various radioactive materials, and verified the application of RSM in adsorption isotherm analysis and thermodynamic calculation. The main advantage of RSM in radioactive material separation is the reduction in the number of experiments required, resulting in considerably less radioactive material consumption, secondary waste generation, workload and radiation dose, which is valuable for the research of radioactive material separation.


Corresponding author: Tao Chen, School of Nuclear Science and Engineering, North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing, 102206, China; and Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing, 102206, China, E-mail:

Funding source: Major National Science and Technology Specific Project of Large Advanced Pressurized Water Reactor Nuclear Power Plant

Award Identifier / Grant number: 2019ZX06004009

Funding source: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809

Award Identifier / Grant number: U1967212

Funding source: Fundamental Research Funds for the Central Universities

Award Identifier / Grant number: 2018ZD10

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by the Major National Science and Technology Specific Project of Large Advanced Pressurized Water Reactor Nuclear Power Plant (2019ZX06004009), National Natural Science Foundation of China (U1967212) and the Fundamental Research Funds for the Central Universities (2018ZD10).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. He, Q., Peters, G. M., Lynch, V. M., Sessler, J. L. Innenrücktitelbild: recognition and extraction of cesium hydroxide and carbonate by using a neutral multitopic ion-pair receptor (Angew. Chem. 43/2017). Angew. Chem. 2017, 129, 13717; https://doi.org/10.1002/ange.201708377.Suche in Google Scholar

2. Jia, F., Li, J., Wang, J., Sun, Y. Removal of cesium from simulated radioactive wastewater using a novel disc tubular reverse osmosis system. Nucl. Technol. 2017, 197, 219–224; https://doi.org/10.13182/nt16-6.Suche in Google Scholar

3. Li, J., Zhuang, S., Wang, L., Wang, J. Treatment of radioactive wastewater from high-temperature gas-cooled reactor by membrane system. Nucl. Technol. 2018, 203, 101–107; https://doi.org/10.1080/00295450.2018.1432838.Suche in Google Scholar

4. Osmanlioglu, A. E. Decontamination of radioactive wastewater by two-staged chemical precipitation. Nucl. Eng. Technol. 2018, 50, 886–889; https://doi.org/10.1016/j.net.2018.04.009.Suche in Google Scholar

5. Paiva, A. P., Malik, P. Recent advances on the chemistry of solvent extraction applied to the reprocessing of spent nuclear fuels and radioactive wastes. J. Radioanal. Nucl. Chem. 2004, 261, 485–496; https://doi.org/10.1023/b:jrnc.0000034890.23325.b5.10.1023/B:JRNC.0000034890.23325.b5Suche in Google Scholar

6. Smith, F. G., Hamm, L. L., Aleman, S. E., Johnson, M. E. Modeling ion-exchange for cesium removal from alkaline radioactive waste solutions. Separ. Sci. Technol. 2009, 44, 2983–3012; https://doi.org/10.1080/01496390903182545.Suche in Google Scholar

7. Wang, J., Zhuang, S. Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes. Nucl. Eng. Technol. 2019, 52, 328–336; https://doi.org/10.1016/j.net.2019.08.001.Suche in Google Scholar

8. Wang, J., Zhuang, S. Removal of cesium ions from aqueous solutions using various separation technologies. Rev. Environ. Sci. Biotechnol. 2019, 18, 231–269; https://doi.org/10.1007/s11157-019-09499-9.Suche in Google Scholar

9. Wu, L., Cao, J., Wu, Z., Zhang, J., Yang, Z. The mechanism of radioactive strontium removal from simulated radioactive wastewater via a coprecipitation microfiltration process. J. Radioanal. Nucl. Chem. 2017, 314, 1973–1981; https://doi.org/10.1007/s10967-017-5570-x.Suche in Google Scholar

10. Xu, C., Wang, J., Chen, J. Solvent extraction of strontium and cesium: a review of recent progress. Solvent Extr. Ion Exch. 2012, 30, 623–650; https://doi.org/10.1080/07366299.2012.700579.Suche in Google Scholar

11. Gao, M., Zhu, G., Gao, C. A review: adsorption materials for the removal and recovery of uranium from aqueous solutions. Energy Environ. Focus 2014, 3, 219–226.10.1166/eef.2014.1104Suche in Google Scholar

12. Kausar, A., Bhatti, H. N. Adsorptive removal of uranium from wastewater: a review. J. Chem. Soc. Pak. 2013, 35, 1041–1052.Suche in Google Scholar

13. Rahman, R. O. A., Ibrahium, H. A., Hung, Y.-T. Liquid radioactive wastes treatment: a review. Water 2011, 3, 551–565; https://doi.org/10.3390/w3020551.Suche in Google Scholar

14. Sheng, G., Huang, C., Chen, G., Sheng, J., Ren, X., Hu, B., Ma, J., Wang, X., Huang, Y., Alsaedi, A. Adsorption and co-adsorption of graphene oxide and Ni(II) on iron oxides: a spectroscopic and microscopic investigation. Environ. Pollut. 2018, 233, 125–131.10.1016/j.envpol.2017.10.047Suche in Google Scholar PubMed

15. Arabi, M., Ostovan, A., Ghaedi, M., Purkait, M. K. Novel strategy for synthesis of magnetic dummy molecularly imprinted nanoparticles based on functionalized silica as an efficient sorbent for the determination of acrylamide in potato chips: optimization by experimental design methodology. Talanta 2016, 154, 526–532; https://doi.org/10.1016/j.talanta.2016.04.010.Suche in Google Scholar PubMed

16. Chakraborty, V., Sengupta, S., Chaudhuri, P., Das, P. Assessment on removal efficiency of chromium by the isolated manglicolous fungi from Indian Sundarban mangrove forest: removal and optimization using response surface methodology. Environ. Technol. Innov. 2018, 10, 335–344; https://doi.org/10.1016/j.eti.2018.04.007.Suche in Google Scholar

17. Baş, D., Boyacı, İ. H. Modeling and optimization I: usability of response surface methodology. J. Food Eng. 2007, 78, 836–845; https://doi.org/10.1016/j.jfoodeng.2005.11.024.Suche in Google Scholar

18. Wang, J. L., Wan, W. Experimental design methods for fermentative hydrogen production: a review. Int. J. Hydrogen Energy 2009, 34, 235–244.10.1016/j.ijhydene.2008.10.008Suche in Google Scholar

19. Box, G. E. P., Wilson, K. B. On the experimental attainment of optimum conditions. J. R. Statist. Soc. Ser. B Methods 1951, 13, 1–45.10.1007/978-1-4612-4380-9_23Suche in Google Scholar

20. Amini, M., Younesi, H., Bahramifar, N. Biosorption of nickel(II) from aqueous solution by Aspergillus niger: response surface methodology and isotherm study. Chemosphere 2009, 75, 1483–1491.10.1016/j.chemosphere.2009.02.025Suche in Google Scholar PubMed

21. Anfar, Z., Ait Ahsaine, H., Zbair, M., Amedlous, A., Ait El Fakir, A., Jada, A., El Alem, N. Recent trends on numerical investigations of response surface methodology for pollutants adsorption onto activated carbon materials: a review. Crit. Rev. Environ. Sci. Technol. 2019, 1–42; https://doi.org/10.1080/10643389.2019.1642835.Suche in Google Scholar

22. Arulkumar, M., Sathishkumar, P., Palvannan, T. Optimization of orange G dye adsorption by activated carbon of Thespesia populnea pods using response surface methodology. J. Hazard. Mater. 2011, 186, 827–834.10.1016/j.jhazmat.2010.11.067Suche in Google Scholar PubMed

23. Ferreira, S. L. C., Bruns, R. E., da Silva, E. G. P., dos Santos, W. N. L., Quintella, C. M., David, J. M., de Andrade, J. B., Breitkreitz, M. C., Jardim, I. C. S. F., Neto, B. B. Statistical designs and response surface techniques for the optimization of chromatographic systems. J. Chromatogr. A 2007, 1158, 2–14.10.1016/j.chroma.2007.03.051Suche in Google Scholar PubMed

24. Karimifard, S., Alavi Moghaddam, M. R. Application of response surface methodology in physicochemical removal of dyes from wastewater: a critical review. Sci. Total Environ. 2018, 640–641, 772–797.10.1016/j.scitotenv.2018.05.355Suche in Google Scholar PubMed

25. Nair, A. T., Makwana, A. R., Ahammed, M. M. The use of response surface methodology for modelling and analysis of water and wastewater treatment processes: a review. Water Sci. Technol. 2014, 69, 464; https://doi.org/10.2166/wst.2013.733.Suche in Google Scholar PubMed

26. Sun, Y. R., Yang, Y. X., Yang, M. X., Yu, F., Ma, J. Response surface methodological evaluation and optimization for adsorption removal of ciprofloxacin onto graphene hydrogel. J. Mol. Liq. 2019, 284, 124–130; https://doi.org/10.1016/j.molliq.2019.03.118.Suche in Google Scholar

27. Witek-Krowiak, A., Chojnacka, K., Podstawczyk, D., Dawiec, A., Pokomeda, K. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresour. Technol. 2014, 160, 150–160.10.1016/j.biortech.2014.01.021Suche in Google Scholar PubMed

28. Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., Escaleira, L. A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977; https://doi.org/10.1016/j.talanta.2008.05.019.Suche in Google Scholar PubMed

29. Myers, R. H., Montgomery, D. C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; John Wiley & Sons, Inc: New York, 1995.Suche in Google Scholar

30. Da, T. X., Chen, T. Optimization of experimental factors on iodate adsorption: a case study of pomelo peel. J. Radioanal. Nucl. Chem. 2020, 326, 511–523; https://doi.org/10.1007/s10967-020-07312-4.Suche in Google Scholar

31. Dai, L. C., Li, L., Zhu, W., Ma, H., Huang, H., Lu, Q., Yang, M., Ran, Y. Post-engineering of biochar via thermal air treatment for highly efficient promotion of uranium(VI) adsorption. Bioresour. Technol. 2020, 298, 122576; https://doi.org/10.1016/j.biortech.2019.122576.Suche in Google Scholar PubMed

32. Sakkas, V. A., Islam, M. A., Stalikas, C., Albanis, T. A. Photocatalytic degradation using design of experiments: a review and example of the Congo red degradation. J. Hazard. Mater. 2010, 175, 3344. https://doi.org/10.1016/j.jhazmat.2009.10.050.Suche in Google Scholar PubMed

33. Box, G. E. P., Behnken, D. W. Some new three level designs for the study of quantitative variables. Technometrics 1960, 2, 455–475; https://doi.org/10.1080/00401706.1960.10489912.Suche in Google Scholar

34. Myers, R. H., Montgomery, D. C., Anderson-Cook, C. M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd ed.; John Wiley & Sons: New York, 2009.Suche in Google Scholar

35. Iversen, G. R., Norpoth, H. Analysis of Variance (Quantitative Applications in the Social Sciences), 1st ed.; SAGE Publications Inc.: Thousand Oaks, CA, 1987.10.4135/9781412983327Suche in Google Scholar

36. Massart, D. L., Vandeginste, B. G. M., Buydens, L. M. C., De Jong, S., Lewi, P. J., Smeyers-Verbeke, J. Handbook of chemometrics and qualimetrics: part A. In Data Handling in Science and Technology; Elsevier: The Netherlands, Vol. 20A, 1998.Suche in Google Scholar

37. Amini, M., Younesi, H. Biosorption of Cd(II), Ni(II) and Pb(II) from aqueous solution by dried biomass of Aspergillus niger: application of response surface methodology to the optimization of process parameters. Clean-Soil Air Water 2009, 37, 776–786.10.1002/clen.200900090Suche in Google Scholar

38. Murphy, T. E., Tsui, K.-L., Allen, J. K. A review of robust design methods for multiple responses. Res. Eng. Des. 2004, 15, 201–215; https://doi.org/10.1007/s00163-004-0054-8.Suche in Google Scholar

39. Brugge, D., Buchner, V. Health effects of uranium: new research findings. Rev. Environ. Health 2011, 26, 231–249; https://doi.org/10.1515/REVEH.2011.032.Suche in Google Scholar

40. Stammler, L., Uhl, A., Mayer, B., Keller, F. Renal effects and carcinogenicity of occupational exposure to uranium: a meta-analysis. Nephron Extra 2016, 6, 1–11; https://doi.org/10.1159/000442827.Suche in Google Scholar PubMed PubMed Central

41. Wang, X. X., Fan, Q. H., Yu, S. J., Chen, Z. S., Ai, Y. J., Sun, Y. B., Hobiny, A., Alsaedi, A., Wang, X. K. High sorption of U(VI) on graphene oxides studied by batch experimental and theoretical calculations. Chem. Eng. J. 2016, 287, 448–455; https://doi.org/10.1016/j.cej.2015.11.066.Suche in Google Scholar

42. Celik, F., Aslani, M. A. A., Seyhaneyildiz Can, S. Turk. J. Fish. Aquat. Sci. 2019, 19; https://doi.org/10.4194/1303-2712-v19_7_06.Suche in Google Scholar

43. Sert, Ş., Eral, M. Uranium adsorption studies on aminopropyl modified mesoporous sorbent (NH2–MCM-41) using statistical design method. J. Nucl. Mater. 2010, 406, 285–292; https://doi.org/10.1016/j.jnucmat.2010.08.024.Suche in Google Scholar

44. Zhao, C., Liu, J., Li, X., Li, F., Tu, H., Sun, Q., Liu, N. Biosorption and bioaccumulation behavior of uranium on Bacillus sp. dwc-2: investigation by Box-Behenken design method. J. Mol. Liq. 2016, 221, 156–165; https://doi.org/10.1016/j.molliq.2016.05.085.Suche in Google Scholar

45. Cakir, P., Inan, S., Altas, Y. Investigation of strontium and uranium sorption onto zirconium-antimony oxide/polyacrylonitrile (Zr-Sb oxide/PAN) composite using experimental design. J. Hazard. Mater. 2014, 271, 108–119; https://doi.org/10.1016/j.jhazmat.2014.02.014.Suche in Google Scholar PubMed

46. Sohbatzadeh, H., Keshtkar, A. R., Safdari, J., Fatemi, F. U(VI) biosorption by bi-functionalized Pseudomonas putida @ chitosan bead: modeling and optimization using RSM. Int. J. Biol. Macromol. 2016, 89, 647–658; https://doi.org/10.1016/j.ijbiomac.2016.05.017.Suche in Google Scholar PubMed

47. Kausar, A., Bhatti, H. N., Iqbal, M., Ashraf, A. Batch versus column modes for the adsorption of radioactive metal onto rice husk waste: conditions optimization through response surface methodology. Water Sci. Technol. 2017, 76, 1035–1043; https://doi.org/10.2166/wst.2017.220.Suche in Google Scholar PubMed

48. Talebi, M., Abbasizadeh, S., Keshtkar, A. R. Evaluation of single and simultaneous thorium and uranium sorption from water systems by an electrospun PVA/SA/PEO/HZSM5 nanofiber. Process Saf. Environ. Protect. 2017, 109, 340–356; https://doi.org/10.1016/j.psep.2017.04.013.Suche in Google Scholar

49. Zhang, W.-L., Zhang, Z.-B., Cao, X.-H., Ma, R.-C., Liu, Y.-H. Uranium adsorption studies on hydrothermal carbon produced by chitosan using statistical design method. J. Radioanal. Nucl. Chem. 2014, 301, 197–205; https://doi.org/10.1007/s10967-014-3128-8.Suche in Google Scholar

50. Kaynar, Ü. H., Çınar, S., Çam Kaynar, S., Ayvacıklı, M., Aydemir, T. Modelling and optimization of uranium (VI) ions adsorption onto nano-ZnO/chitosan bio-composite beads with response surface methodology (RSM). J. Polym. Environ. 2017, 26, 2300–2310; https://doi.org/10.1007/s10924-017-1125-z.Suche in Google Scholar

51. Kaynar, Ü. H. A modeling and optimization study by response surface methodology (RSM) on UO22+ ions adsorption using nano-MgO particles prepared with combustion synthesis. Inorg. Nano-Met. Chem. 2018, 1–9; https://doi.org/10.1080/24701556.2018.1503678.Suche in Google Scholar

52. Xu, C., Wang, J., Yang, T., Chen, X., Liu, X., Ding, X. Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology. Carbohydr. Polym. 2015, 121, 79–85; https://doi.org/10.1016/j.carbpol.2014.12.024.Suche in Google Scholar PubMed

53. Yang, X., Gao, Y., Jiang, M., He, D., Liao, S., Hou, D., Tan, N. Preparation, characterization, uranium (VI) biosorption models, and conditions optimization by response surface methodology (RSM) for amidoxime-functionalized marine fungus materials. Radiochim. Acta 2017, 105; https://doi.org/10.1515/ract-2016-2678.Suche in Google Scholar

54. Aggarwal, S. K. A review on the mass spectrometric analysis of thorium. Radiochim. Acta 2016, 104, 445–455; https://doi.org/10.1515/ract-2015-2559.Suche in Google Scholar

55. Yang, X. J., Zhang, Z. F., Kuang, S. T., Wei, H. Q., Li, Y. L., Wu, G. L., Geng, A. F., Li, Y. H., Liao, W. P. Removal of thorium and uranium from leach solutions of ion-adsorption rare earth ores by solvent extraction with Cextrant 230. Hydrometallurgy 2020, 194, 105343; https://doi.org/10.1016/j.hydromet.2020.105343.Suche in Google Scholar

56. Aslani, M. A. A., Celik, F., Yusan, S., Kutahyali Aslani, C. Assessment of the adsorption of thorium onto styrene–divinylbenzene-based resin: optimization using central composite design and thermodynamic parameters. Process Saf. Environ. Prot. 2017, 109.10.1016/j.psep.2017.02.019Suche in Google Scholar

57. Varala, S., Ravisankar, V., Al-Ali, M., Pownceby, M. I., Parthasarathy, R., Bhargava, S. K. Process optimization using response surface methodology for the removal of thorium from aqueous solutions using rice-husk. Chemosphere 2019, 124488; https://doi.org/10.1016/j.chemosphere.2019.124488.Suche in Google Scholar PubMed

58. Qi, C., Liu, H., Deng, S., Yang, A., Li, Z. A modeling study by response surface methodology (RSM) on Th(IV) adsorption optimization using a sulfated β-cyclodextrin inclusion complex. Res. Chem. Intermed. 2018, 44, 2889–2911; https://doi.org/10.1007/s11164-018-3286-3.Suche in Google Scholar

59. Kaynar, Ü. H., Şabikoğlu, I., Kaynar, S. Ç., Eral, M. Modeling of thorium (IV) ions adsorption onto a novel adsorbent material silicon dioxide nano-balls using response surface methodology. Appl. Radiat. Isot. 2016, 115, 280–288; https://doi.org/10.1016/j.apradiso.2016.06.033.Suche in Google Scholar PubMed

60. Kaynar, U. H., Şabikoğlu, İ. Adsorption of thorium (IV) by amorphous silica; response surface modelling and optimization. J. Radioanal. Nucl. Chem. 2018, 318, 823–834; https://doi.org/10.1007/s10967-018-6044-5.Suche in Google Scholar

61. Liu, H., Qi, C., Feng, Z., Lei, L., Deng, S. Adsorption of trace thorium(IV) from aqueous solution by mono-modified β-cyclodextrin polyrotaxane using response surface methodology (RSM). J. Radioanal. Nucl. Chem. 2017, 314, 1607–1618; https://doi.org/10.1007/s10967-017-5518-1.Suche in Google Scholar

62. Broujeni, B. R., Nilchi, A., Hassani, A. H., Saberi, R. Preparation and characterization of chitosan/Fe2O3 nano composite for the adsorption of thorium (IV) ion from aqueous solution. Water Sci. Technol. 2018, 78, 708–720; https://doi.org/10.2166/wst.2018.343.Suche in Google Scholar PubMed

63. Karimi, M., Milani, S. A., Abolgashemi, H. Kinetic and isotherm analyses for thorium (IV) adsorptive removal from aqueous solutions by modified magnetite nanoparticle using response surface methodology (RSM). J. Nucl. Mater. 2016, 479, 174–183; https://doi.org/10.1016/j.jnucmat.2016.07.020.Suche in Google Scholar

64. McKinley, J. P., Zachara, J. M., Smith, S. C., Liu, C. Cation exchange reactions controlling desorption of 90Sr2+ from coarse-grained contaminated sediments at the Hanford site. Wash. Times 2007, 71, 0–325; https://doi.org/10.1016/j.gca.2006.09.027.Suche in Google Scholar

65. Nagaoka, M., Yokoyama, H., Fujita, H., Nakano, M., Watanabe, H., Sumiya, S. Spatial distribution of radionuclides in seabed sediments off Ibaraki coast after the Fukushima daiichi nuclear power plant accident. J. Radioanal. Nucl. Chem. 2015, 303, 1305–1308; https://doi.org/10.1007/s10967-014-3633-9.Suche in Google Scholar

66. Reynolds, J. G., Cooke, G. A., Herting, D. L. Sodium strontium phosphate nonahydrate (NaSrPO4·9H2O) found in Hanford nuclear waste. J. Radioanal. Nucl. Chem. 2020, 326, 435–443; https://doi.org/10.1007/s10967-020-07296-1.Suche in Google Scholar

67. Çiçek, E., Cojocaru, C., Zakrzewska-Trznadel, G., Harasimowicz, M., Miskiewicz, A. Response surface methodology for the modelling of 85Sr adsorption on zeolite 3A and pumice. Environ. Technol. 2012, 33, 51–59; https://doi.org/10.1080/09593330.2010.549514.Suche in Google Scholar PubMed

68. Abdel Rahman, R. O., Abdel Moamen, O. A., Abdelmonem, N., Ismail, I. M. Optimizing the removal of strontium and cesium ions from binary solutions on magnetic nano-zeolite using response surface methodology (RSM) and artificial neural network (ANN). Environ. Res. 2019, 173, 397–410; https://doi.org/10.1016/j.envres.2019.03.055.Suche in Google Scholar PubMed

69. Abdollahi, T., Towfighi, J., Rezaei-Vahidian, H. Sorption of cesium and strontium ions by natural zeolite and management of produced secondary waste. Environ. Technol. Innov. 2019, 100592; https://doi.org/10.1016/j.eti.2019.100592.Suche in Google Scholar

70. Srivastava, V., Maydannik, P., Sillanpää, M. Synthesis and characterization of PPy@NiO nano-particles and their use as adsorbent for the removal of Sr(II) from aqueous solutions. J. Mol. Liq. 2016, 223, 395–406; https://doi.org/10.1016/j.molliq.2016.08.034.Suche in Google Scholar

71. Liu, Y., Liu, F., Ni, L., Meng, M., Meng, X., Zhong, G., Qiu, J. A modeling study by response surface methodology (RSM) on Sr(ii) ion dynamic adsorption optimization using a novel magnetic ion imprinted polymer. RSC Adv. 2016, 6, 54679–54692; https://doi.org/10.1039/c6ra07270d.Suche in Google Scholar

72. Chakraborty, V., Das, P., Roy, P. K. Carbonaceous materials synthesized from thermally treated waste materials and its application for the treatment of strontium metal solution: batch and optimization using response surface methodology. Environ. Technol. Innov. 2019, 15, 100394; https://doi.org/10.1016/j.eti.2019.100394.Suche in Google Scholar

73. Kasap, S., Aslan, E. N., Öztürk, I. Investigation of MnO2 nanoparticles anchored 3D-graphene foam composites (3DGF-MnO2) as an adsorbent for strontium adsorption using central composite design (CCD) method. New J. Chem. 2019, 43, 2981–2989; https://doi.org/10.1039/c8nj05283b.Suche in Google Scholar

74. Azizkhani, M., Faghihian, H. Application of a novel adsorbent prepared using magnetized Spirulina platensis algae modified by potassium nickel hexacyanoferrate for removal of cesium, studied by response surface methodology. Compt. Rendus Chem. 2019, 22, 562–573; https://doi.org/10.1016/j.crci.2019.06.002.Suche in Google Scholar

75. Remenárová, L., Pipíška, M., Florková, E., Horník, M., Rozložník, M., Augustín, J. Zeolites from coal fly ash as efficient sorbents for cadmium ions. Clean Technol. Environ. Policy 2014, 16, 1551–1564; https://doi.org/10.1007/s10098-014-0728-5.Suche in Google Scholar

76. Jang, J., Lee, D. S. Magnetite nanoparticles supported on organically modified montmorillonite for adsorptive removal of iodide from aqueous solution: optimization using response surface methodology. Sci. Total Environ. 2018, 615, 549–557; https://doi.org/10.1016/j.scitotenv.2017.09.324.Suche in Google Scholar

77. Chen, T., Li, B., Fang, L., Chen, D., Xu, W., Xiong, C. Response surface methodology for optimizing adsorption performance of gel-type weak acid resin for Eu(III). Trans. Nonferrous Metals Soc. China 2015, 25, 4207–4215; https://doi.org/10.1016/s1003-6326(15)64071-7.Suche in Google Scholar

78. Ertürk, A. S. PAMAM dendrimer-enhanced removal of cobalt ions based on multiple-response optimization using response surface methodology. J. Iran. Chem. Soc. 2018, 15, 1685–1698; https://doi.org/10.1007/s13738-018-1366-3.Suche in Google Scholar

79. Seyed Dorraji, M. S., Amani-Ghadim, A. R., Hanifehpour, Y., Woo Joo, S., Figoli, A., Carraro, M., Tasselli, F. Performance of chitosan based nanocomposite hollow fibers in the removal of selenium(IV) from water. Chem. Eng. Res. Des. 2017, 117, 309–317; https://doi.org/10.1016/j.cherd.2016.10.043.Suche in Google Scholar

80. Yazdankish, E., Foroughi, M., Azqhandi, M. H. A. Capture of I131 from medical-based wastewater using the highly effective and recyclable adsorbent of g-C3N4 assembled with Mg-Co-Al-layered double hydroxide. J. Hazard. Mater. 2020, 122151; https://doi.org/10.1016/j.jhazmat.2020.122151.Suche in Google Scholar PubMed

81. Uogintė, I., Lujanienė, G., Mažeika, K. Study of Cu(II),Co(II),Ni(II) and Pb(II) removal from aqueous solutions using magnetic Prussian blue nano-sorbent. J. Hazard. Mater. 2019, 226–235; https://doi.org/10.1016/j.jhazmat.2019.02.039.Suche in Google Scholar PubMed

82. Srivastava, V., Sharma, Y. C., Sillanpää, M. Application of response surface methodology for optimization of Co(II) removal from synthetic wastewater by adsorption on NiO nanoparticles. J. Mol. Liq. 2015, 211, 613–620; https://doi.org/10.1016/j.molliq.2015.07.056.Suche in Google Scholar

83. Hymavathi, D., Prabhakar, G. Studies on the removal of cobalt(II) from aqueous solutions by adsorption with Ficus benghalensis leaf powder through response surface methodology. Chem. Eng. Commun. 2017, 204, 1401–1411; https://doi.org/10.1080/00986445.2017.1365063.Suche in Google Scholar

84. Hong, S. H., Lyonga, F. N., Kang, J. K., Seo, E. J., Lee, C. G., Jeong, S., Hong, S. G., Park, S. J. Synthesis of Fe-impregnated biochar from food waste for selenium(Ⅵ) removal from aqueous solution through adsorption: process optimization and assessment. Chemosphere 2020, 126475; https://doi.org/10.1016/j.chemosphere.2020.126475.Suche in Google Scholar PubMed

85. Lee, C. L., H’ng, P. S., Chin, K. L., Paridah, M. T., Rashid, U., Go, W. Z. Characterization of bioadsorbent produced using incorporated treatment of chemical and carbonization procedures. R. Soc. Open Sci. 2019, 6, 190667; https://doi.org/10.1098/rsos.190667.Suche in Google Scholar PubMed PubMed Central

86. Zheng, Z., Xia, H., Srinivasakannan, C., Peng, J., Zhang, L. Preparation of eupatorium adenophorum based porous carbon with microwave heating using response surface methodology. High Temp. Mater. Process. 2014, 33; https://doi.org/10.1515/htmp-2013.Suche in Google Scholar

87. Das, S., Mishra, S. Box-Behnken statistical design to optimize preparation of activated carbon from Limonia acidissima shell with desirability approach. J. Environ. Chem. Eng. 2017, 5, 588–600; https://doi.org/10.1016/j.jece.2016.12.034.Suche in Google Scholar

88. Gao, F., Ge, Y. X., Zhao, J., Yang, H. X. Technology optimization study on preparation of activated carbon from rice husk cracking. Adv. Mater. Res. 2011, 197–198, 931–934; https://doi.org/10.4028/www.scientific.net/amr.197-198.931.Suche in Google Scholar

89. Li, X., Yang, F., Li, P., Yang, X., He, J., Wang, H., Lv, P. Optimization of preparation process of activated carbon from chestnut burs assisted by microwave and pore structural characterization analysis. J. Air Waste Manag. Assoc. 2015, 65, 1297–1305; https://doi.org/10.1080/10962247.2015.1083493.Suche in Google Scholar PubMed

90. Zuo, Y., Zhang, L., Peng, J., Srinivasakannan, C., Liu, B., Ma, A. Regeneration of waste activated carbon after extracting gold with steam under microwave heating: optimization using response surface methodology. J. Cent. S. Univ. 2014, 21, 3233–3240; https://doi.org/10.1007/s11771-014-2295-7.Suche in Google Scholar

91. Zakrzewska-Koltuniewicz, G., Herdzik-Koniecko, I., Cojocaru, C., Chajduk, E. Experimental design and optimization of leaching process for recovery of valuable chemical elements (U, La, V, Mo, Yb and Th) from low-grade uranium ore. J. Hazard. Mater. 2014, 275, 136–145; https://doi.org/10.1016/j.jhazmat.2014.04.066.Suche in Google Scholar PubMed

92. Zhou, Z. K., Yang, Z. H., Sun, Z. X., Chen, G. X., Xu, L. L., Liao, Q. Optimization of bioleaching high-fluorine and low-sulfur uranium ore by response surface method. J. Radioanal. Nucl. Chem. 2019, 322, 781–790.10.1007/s10967-019-06712-5Suche in Google Scholar

93. Eisapour, M., Keshtkar, A., Moosavian, M. A., Rashidi, A. Bioleaching of uranium in batch stirred tank reactor: process optimization using Box–Behnken design. Ann. Nucl. Energy 2013, 54, 245–250; https://doi.org/10.1016/j.anucene.2012.11.006.Suche in Google Scholar

94. Jalali, F., Fakhar, J., Zolfaghari, A. On using a new strain of Acidithiobacillusferridurans for bioleaching of low-grade uranium. Separ. Sci. Technol. 2019, 55, 994–1004; https://doi.org/10.1080/01496395.2019.1575417.Suche in Google Scholar

95. Fatemi, F., Arabieh, M., Jahani, S. Application of response surface methodology to optimize uranium biological leaching at high pulp density. Radiochim. Acta 2016, 104; https://doi.org/10.1515/ract-2015-2495.Suche in Google Scholar

96. Mo, X., Li, X., Wen, J. Optimization of bioleaching of fluoride-bearing uranium ores by response surface methodology. J. Radioanal. Nucl. Chem. 2019, 321, 579–590; https://doi.org/10.1007/s10967-019-06594-7.Suche in Google Scholar

97. Rashidi, A., Roosta-Azad, R., Safdari, S. J. Optimization of operating parameters and rate of uranium bioleaching from a low-grade ore. J. Radioanal. Nucl. Chem. 2014, 301, 341–350; https://doi.org/10.1007/s10967-014-3164-4.Suche in Google Scholar

98. Zare Tavakoli, H., Abdollahy, M., Ahmadi, S. J., Khodadadi Darban, A. The effect of particle size, irrigation rate and aeration rate on column bioleaching of uranium ore. Russ. J. Non-Ferrous Metals 2017, 58, 188–199; https://doi.org/10.3103/s106782121703018x.Suche in Google Scholar

99. Whitty-Léveillé, L., Reynier, N., Larivière, D. Rapid and selective leaching of actinides and rare earth elements from rare earth-bearing minerals and ores. Hydrometallurgy 2018, 177, 187–196; https://doi.org/10.1016/j.hydromet.2018.03.015.Suche in Google Scholar

100. Dolatyari, L., Yaftian, M. R., Rostamnia, S., Seyeddorraji, M. S. Multivariate optimization of a functionalized SBA-15 mesoporous based solid-phase extraction for U(VI) determination in water samples. Anal. Sci. 2017, 33, 769–776; https://doi.org/10.2116/analsci.33.769.Suche in Google Scholar PubMed

101. Yi, R., Ye, G., Wu, F., Lv, D., Chen, J. Magnetic solid-phase extraction of strontium using core–shell structured magnetic microspheres impregnated with crown ether receptors: a response surface optimization. J. Radioanal. Nucl. Chem. 2015, 308, 599–608; https://doi.org/10.1007/s10967-015-4468-8.Suche in Google Scholar

102. Nariyan, E., Sillanpää, M., Wolkersdorfer, C. Uranium removal from Pyhäsalmi/Finland mine water by batch electrocoagulation and optimization with the response surface methodology. Separ. Purif. Technol. 2018, 193, 386–397.10.1016/j.seppur.2017.10.020Suche in Google Scholar

103. Shirvani, S., Mallah, M. H., Moosavian, M. A., Safdari, J. Magnetic ionic liquid in magmolecular process for uranium removal. Chem. Eng. Res. Des. 2016, 109, 108–115.10.1016/j.cherd.2016.01.014Suche in Google Scholar

104. Radu, A. D., Panturu, E., Woinaroschy, A., Isopescu, R. Experimental design and process optimization for uranium polluted soils decontamination by acid washing. Water Air Soil Pollut 2015, 226; https://doi.org/10.1007/s11270-015-2351-4.Suche in Google Scholar

105. Cojocaru, C., Zakrzewska-Trznadel, G., Jaworska, A. Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach. part 1: optimization of complexation conditions. J. Hazard. Mater. 2009, 169, 599–609.10.1016/j.jhazmat.2009.03.145Suche in Google Scholar PubMed

106. Cojocaru, C., Zakrzewska-Trznadel, G., Miskiewicz, A. Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach. J. Hazard. Mater. 2009, 169, 610–620.10.1016/j.jhazmat.2009.03.148Suche in Google Scholar PubMed

107. Candela, A. M., Coello, J., Palet, C. Doehlert experimental design as a tool to study liquid–liquid systems for the recovery of uranium (VI) traces. Separ. Purif. Technol. 2013, 118, 399–405; https://doi.org/10.1016/j.seppur.2013.07.017.Suche in Google Scholar

108. Altaş, Y., Tel, H., İnan, S., Sert, Ş., Çetinkaya, B., Sengül, S., Özkan, B. An experimental design approach for the separation of thorium from rare earth elements. Hydrometallurgy 2018, 178, 97–105; https://doi.org/10.1016/j.hydromet.2018.04.009.Suche in Google Scholar

109. Chen, T., Da, T., Ma, Y. Reasonable calculation of the thermodynamic parameters from adsorption equilibrium constant. J. Mol. Liq. 2021, 322, 114980.10.1016/j.molliq.2020.114980Suche in Google Scholar

Received: 2021-03-30
Accepted: 2021-10-30
Published Online: 2021-11-22
Published in Print: 2022-01-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1039/pdf
Button zum nach oben scrollen