Startseite Microanalysis and signature of rare earth elements in geochemical samples using neutron activation analysis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microanalysis and signature of rare earth elements in geochemical samples using neutron activation analysis

  • Mohamed F. Attallah ORCID logo EMAIL logo , Fatma S. Abdou und Hisham F. Aly
Veröffentlicht/Copyright: 26. Januar 2021

Abstract

Nuclear techniques are applied for exploration and efficient tapping of natural resources in finding promising resources of mining and mineral processing industries. The rare earth elements (REEs) in four fluorite samples, collected from Nuba Mountains are determined using neutron activation analysis (NAA) technique. The concentration of 11 REEs (Sc, La, Ce, Nd, Sm, Eu, Gd, Dy, Tb, Yb, Lu) was measured and found within ranges between 685 and 1747 ppm. The Ca is a major element in the four samples. The Fe, Al, Na, Ba and Sr are found as minor elements in the investigated samples. In addition, tracer levels of U, Th, Cs, V and Sc are also detected. The signature of Ce, La and Nd as light REEs is characterized in all samples under this study. The enrichment types of light-REEs (L-type), medium-REEs (M-type) and several distinct features of some REEs e.g., Ce and Eu anomalies are identified and described as the signature of REEs in the geochemical samples. These results have demonstrated promising materials that could be used for hydrometallurgy processing to get significant amounts of REEs.


Corresponding author: Mohamed F. Attallah, Analytical Chemistry and Control Department, Hot Laboratories Center, Atomic Energy Authority of Egypt, P.O. Box 13759, Cairo, Egypt, E-mail:

Acknowledgments

The authors wish to express special thanks to Prof. Dr. S. M. Qaim, the Editor-in-chief of Radiochimica Acta, for his valuable efforts and comments to improve our paper. The authors are extended appreciation and thanks express their gratitude to the crew of second Egyptian Nuclear Research Reactor (ETRR-2) at the EAEA for their valuable assistance in the course of activation of the studied samples in due time.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Piper, D. Z., Bau, M. Normalized rare earth elements in water, sediments, and wine: identifying sources and environmental redox conditions.Am. J. Anal. Chem. 2013, 4, 69–83. https://doi.org/10.4236/ajac.2013.410A1009.Suche in Google Scholar

2. Attallah, M. F., Hassan, R. S., Shady, S. A. Chromatographic column separation of rare earth elements by resorcinol formaldehyde cationic exchanger resin. Arab J. Nucl. Sci. Appl. 2013, 46, 18–29.Suche in Google Scholar

3. Seredin, V. V., Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93; https://doi.org/10.1016/j.coal.2011.11.001.Suche in Google Scholar

4. Dai, S., Graham, I. T., Ward, C. R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95; https://doi.org/10.1016/j.coal.2016.04.005.Suche in Google Scholar

5. Borai, E., Attallah, M., Koivula, R., Paajanen, A., Harjula, R. Separation of europium from cobalt using antimony silicates in sulfate acidic media. Min. Proc. Ext. Met. Rev. 2012, 33, 204; https://doi.org/10.1080/08827508.2011.562951.Suche in Google Scholar

6. Shady, S. A., Attallah, M. F., Borai, E. H. Efficient sorption of light rare-earth elements using resorcinol–formaldehyde polymeric resin. Radiochemistry 2011, 53, 396–400; https://doi.org/10.1134/S1066362211040102.Suche in Google Scholar

7. Attallah, M. F., El Afifi, E. M., Awwad, N. S., Aly, H. F. Comparative study on the radioactivity of TE-NORM in different components of oil separator tanks. Radiochim. Acta 2013, 101, 57–65; https://doi.org/10.1524/ract.2013.1996.Suche in Google Scholar

8. El Afifi, E. M., Attallah, M. F., Hilal, M. A., El Reefy, S. A. Treatment of TENORM waste: phosphogypsum produced in fertilizer industry. Radiochemistry 2010, 52, 441–445; https://doi.org/10.1134/S106636221004020X.Suche in Google Scholar

9. El-Didamony, H., Ali, M. M., Awwad, N. S., Attallah, M. F., Fawzy, M. M. Radiological characterization and treatment of contaminated phosphogypsum waste. Radiochemistry 2013, 55, 454–459; https://doi.org/10.1134/S106636221304019X.Suche in Google Scholar

10. Soto-Jiménez, M., Páez-Osuna, F., Morales-Hernández, F. Selected trace metals oysters (Crassostreairidescens) and sediments from the discharge zone of the submarine sewage outfall in Mazatlán by (southeast Gulf of California): chemical fractions and bioaccumulation factors. Environ. Pollut. 2001, 114, 357; https://doi.org/10.1016/s0269-7491(00)00239-6.Suche in Google Scholar

11. Khan, R., Shirai, N., Ebihara, M. Chemical characteristic of Rchondrites in the light of P, REEs, Th and U abundances. Earth Planet Sci. Lett. 2015, 422, 18; https://doi.org/10.1016/j.epsl.2015.04.008.Suche in Google Scholar

12. Ismail, I., Baioumy, H., Ouyang, H., Mossa, H., Aly, H. F. Origin of fluorite mineralization in the Nuba Mountains, Sudan and their rare earth element geochemistry. J. Afr. Earth Sci. 2015, 112, 276–286. https://doi.org/10.1016/j.jafrearsci.2015.09.016.Suche in Google Scholar

13. Chowdhury, M. A. H., Hoque, M. M., Hossain, S. M., Naher, K., Islam, M. A., Tamim, U., Alam, K. M. S., Khan, R. Analysis of heavy metals and other elements in textile waste using neutron activation analysis and atomic absorption spectrophotometry. J. Environ. Sci. Toxicol. Food Technol. 2017, 11, 14; https://doi.org/10.9790/2402-1106011423.Suche in Google Scholar

14. Greenberg, R. R., Bode, P., Fernandes, E. A. D. N. Neutron activation analysis: a primary method of measurement. Spectrochim. Acta Part B 2011, 66, 193; https://doi.org/10.1016/j.sab.2010.12.011.Suche in Google Scholar

15. Noli, F., Tsamos, P. Concentration of heavy metals and trace elements in soils, waters and vegetables and assessment of health risk in the vicinity of a lignite-fired power plant. Sci. Total Environ. 2016, 563–564, 377; https://doi.org/10.1016/j.scitotenv.2016.04.098.Suche in Google Scholar

16. Cristache, C., Duliu, O. G., Ricman, C., Toma, M., Dragolici, F., Bragea, M., Done, L. Determination of elemental content in geological samples. Rom. J. Phys. 2008, 53, 941–946.Suche in Google Scholar

17. Anders, B., Junge, W., Knoth, J., Michaelis, W., Pepelnik, R., Schwenke, H. Application of nuclear analytical methods to heavy metal pollution studies of estuaries. US-DOE, CONF-840408. In US-DOE, CONF-840408, Proceedings of the Fifth international conference on nuclear methods in environmental and energy research. Held at Mayaguez, Puerto Rico, April 2–6 (1984); Vogt, J. R., Ed., 1984; p. 202. https://inis.iaea.org/collection/NCLCollectionStore/_Public/16/076/16076690.pdf.Suche in Google Scholar

18. Fodor, L., Csontos, L., Bada, G., Györfi, I., Benkovics, L. The Mediterranean Basins: Tertiary Extension Within the Alpine Orogen; Geological Society Special Publication: London, Vol. 156, 1999; p. 295.10.1144/GSL.SP.1999.156.01.15Suche in Google Scholar

19. Attallah, M. F., Metwally, S. S., Moussa, S. I., Soliman, M. A. Environmental impact assessment of phosphate fertilizers and phosphogypsum waste: elemental and radiological effects. Microchem. J. 2019, 146C, 789–797. https://doi.org/10.1016/j.microc.2019.02.001.Suche in Google Scholar

20. Attallah, M. F., Hilal, M. A., Moussa, S. I. Quantification of some elements of nuclear and industrial interest from zircon mineral using neutron activation analysis and passive gamma-ray spectroscopy. Appl. Radiat. Isot. 2017, 128, 224–230. https://doi.org/10.1016/j.apradiso.2017.07.018.Suche in Google Scholar

21. Khan, R., Parvez, Md. S., Tamim, U., Das, S., Islam, M. A., Naher, K., Khan, Md. H. R., Nahid, F., Hossain, S. M. Assessment of rare earth elements, Th and U profile of a site for a potential coal based power plant by instrumental neutron activation analysis. Radiochim. Acta 2018, 106, 515–524. https://doi.org/10.1515/ract-2017-2867.Suche in Google Scholar

22. Jaćimović, R., Taseska-Gjorgjijevski, M., Stafilov, T., Jovanovski, G., Makreski, P. Application of k0 -instrumental neutron activation analysis for determination of major and trace elements in some manganese minerals. Geol. Maced. 2018, 32, 157–162.Suche in Google Scholar

23. Soliman, M., Mohamed, N. M. A., Gahen, M., Saad, E. A., Yousef, S. K., Sohsah, M. A. Implementation of k0-standardization method of the INAA at ETRR-2 research reactor. J. Radioanal. Nucl. Chem. 2011, 287, 629–634; https://doi.org/10.1007/s10967-010-0860-6.Suche in Google Scholar

24. Corte, F. D. E., Simonits, A., Wispelaere, A. D. E., Hoste, J., Moens, L., Demeter, A. A Compilation of Ko, Au-Factors and Related Nuclear Data for 112 Radionuclides of Interest in Neutron Activation Analysis; INW/KFKI Interim Report, Institute for Nuclear Sciences, University Gent (Belgium) and Central Research Institute for Physics: Budapest (Hungary), 1986.Suche in Google Scholar

25. http://www.kayzero.com/k0naa/k0naaorg/Nuclear_Data_SC/Entries/2020/8/24_Update_of_k0-database_I-128.html.Suche in Google Scholar

26. Soliman, M., Mohamed, N. M. A., Osman, A. M., Abdel-Monem, A. M. Performance of flowing sample neutron activation analysis technique for determination of multi-elemental content. J. Radioanal. Nucl. Chem. 2014, 299, 89–93; https://doi.org/10.1007/s10967-013-2733-2.Suche in Google Scholar

27. Messaoudi, M., Begaa, S. Application of INAA technique for analysis of essential trace and toxic elements in medicinal seeds of Carumcarvi L. & Foeniculumvul-gare Mill. used in Algeria. J. Appl. Res. Med. Aromat. Plants 2018, 9, 39–45; https://doi.org/10.1016/j.jarmap.2018.01.001.Suche in Google Scholar

28. Bau, M., Schmidt, K., Koschinsky, A., Hein, J., Kuhn, T., Usui, A. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chem. Geol. 2014, 381, 1–9; https://doi.org/10.1016/j.chemgeo.2014.05.004.Suche in Google Scholar

29. Eskenazy, G. M. Rare earth elements and yttrium in lithotypes of Bulgarian coals. Org. Geochem. 1987, 11, 83–89; https://doi.org/10.1016/0146-6380(87)90030-1.Suche in Google Scholar

30. Taylor, S. R., McLennan, S. H. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, 1985; p. 312.Suche in Google Scholar

31. Jiang, Y., Zhao, L., Zhou, G., Wang, X., Zhao, L., Wei, J., Song, H. Petrological, mineralogical, and geochemical compositions of early jurassic coals in the Yining Coalfield, Xinjiang, China. Int. J. Coal Geol., Part A 2015, 152, 47–67; https://doi.org/10.1016/j.coal.2015.07.011.Suche in Google Scholar

32. Saikia, B. K., Ward, C. R., Oliveira, M. L. S., Hower, J. C., Leao, F. D., Johnston, M. N., Bryan, A. O., Sharma, A., Baruah, B. P., Silva, L. F. O. Geochemistry and nano-mineralogy of feed coals, mine overburden and coal-derived fly ashes from Assam (North-east India): a multi-faceted analytical approach. Int. J. Coal Geol. 2015, 137, 19–37; https://doi.org/10.1016/j.coal.2014.11.002.Suche in Google Scholar

33. Crowley, S. S., Stanton, R. W., Ryer, T. A. The effects of volcanic ash on the maceral and chemical composition of the C coal bed, Emery Coal Field, Utah. Org. Geochem. 1989, 14, 315–331; https://doi.org/10.1016/0146-6380(89)90059-4.Suche in Google Scholar

34. Braun, J.-J., Pagel, M., Muller, J.-P., Bilong, P., Michard, A., Guillet, B. Cerium anomalies in lateritic profiles. Geochem. Cosmochim. Acta 1990, 54, 781–795; https://doi.org/10.1016/0016-7037(90)90373-s.Suche in Google Scholar

35. Seto, M., Akagi, T. Chemical condition for the appearance of a negative Ce anomaly in stream waters and groundwaters. Geochem. J. 2008, 42, 371–380; https://doi.org/10.2343/geochemj.42.371.Suche in Google Scholar

36. Bau, M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem. Geol. 1991, 93, 219–230; https://doi.org/10.1016/0009-2541(91)90115-8.Suche in Google Scholar

37. Uysal, I. T., Golding, S. D. Rare earth element fractionation in authigenicillite–smectite from Late Permian clastic rocks, Bowen Basin, Australia: implications for physico-chemical environments of fluids during illitization. Chem. Geol. 2003, 193, 167–179; https://doi.org/10.1016/s0009-2541(02)00324-8.Suche in Google Scholar

38. Kritsananuwat, R., Sahoo, S. K., Fukushi, M., Chanyotha, S. Distribution of rare earth elements, thorium and uranium Gulf of Thailand’s sediments. Environ. Earth Sci. 2014, 73, 3361–3374; https://doi.org/10.1007/s12665-014-3624-8.Suche in Google Scholar

39. Rudnick, R. L., Gao, S. Composition of the continental crust. In Treatise on Geochemistry; Holland, H. D., Turekian, K. K., Eds.; Elsevier: New York, 2003; pp. 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4.Suche in Google Scholar

40. Rudnick, R. L., Gao, S. Composition of the continental crust. In Treatise on Geochemistry; Turekian, K., Holland, H., Eds., 2nd ed., Chapter 4; Elsevier: Oxford, UK, 2014; pp. 1–64.10.1016/B0-08-043751-6/03016-4Suche in Google Scholar

41. Gromet, P. L., Dymek, P. F., Haskin, L. A., Korotev, R. L. The North American shale composite: its composition, major and minor element characteristics. Geochem. Cosmochim. Acta 1984, 48, 2469–2482. https://doi.org/10.1016/0016-7037(84)90298-9.Suche in Google Scholar

42. McLennan, S. M. Relationships between the trace element compositions of sedimentary rocks and upper continental crust. G-cubed 2001, 2, 1–24. https://doi.org/10.1029/2000GC000109.Suche in Google Scholar

43. Piper, D. Z. Rare-earth elements in the sedimentary cycle: a summary. Chem. Geol. 1974, 14, 285–304. https://doi.org/10.1016/0009-2541(74)90066-7.Suche in Google Scholar

44. Schmidt, R. A., Smith, R. H., Lasch, J. E., Mosen, A. W., Olehy, D. A., Vasilevshis, J. Abundances of fourteen rare-earth elements, scandium, and yttrium in meteoritic and terrigenous matter. Geochem. Cosmochim. Acta 1963, 27, 577–622. https://doi.org/10.1016/0016-7037(63)90014-0.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2020-0101).


Received: 2020-09-25
Accepted: 2021-01-10
Published Online: 2021-01-26
Published in Print: 2021-03-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2020-0101/html
Button zum nach oben scrollen